Normally, a Gabor filter, as its name suggests, is used to filter an image and extract everything that it is oriented in the same direction of the filtering.
In the frequency domain:
sigma_u=1/2*pi*sigmaq;
sigma_v=1/2*pi*sigmaq;
u0=2*pi*cos(theta)*lambda(k);
v0=2*pi*sin(theta)*lambda(k);
for u = -filtSizeL:filtSizeR
for v = -filtSizeL:filtSizeR
if ( sqrt(u^2+v^2)>filtSize/2 )
E = 0;
else
v_theta = u*cos(theta) - v*sin(theta);
u_theta = u*sin(theta) + v*cos(theta);
E=(1/2*pi*sigma_u*sigma_v)*((exp((-1/2)*(((u_theta-u0)^2/sigma_u^2))+((v_theta-v0)^2/sigma_v^2))) + (exp((-1/2)*(((u_theta+u0)^2/sigma_u^2))+((v_theta+v0)^2/sigma_v^2))));
end
f(v+center,u+center) = E;
end
end
In the spatial domain:
function [fSiz,filters,c1OL,numSimpleFilters] = init_gabor(rot, RF_siz)
image=imread('xxx.jpg');
image_gray=rgb2gray(image);
image_gray=imresize(image_gray, [100 100]);
image_double=double(image_gray);
rot = [0 45 90 135]; % we have four orientations
RF_siz = [7:2:37]; %we get 16 scales (7x7 to 37x37 in steps of two pixels)
minFS = 7; % the minimum receptive field
maxFS = 37; % the maximum receptive field
sigma = 0.0036*RF_siz.^2 + 0.35*RF_siz + 0.18; %define the equation of effective width
lambda = sigma/0.8; % it the equation of wavelength (lambda)
G = 0.3; % spatial aspect ratio: 0.23 < gamma < 0.92
numFilterSizes = length(RF_siz); % we get 16
numSimpleFilters = length(rot); % we get 4
numFilters = numFilterSizes*numSimpleFilters; % we get 16x4 = 64 filters
fSiz = zeros(numFilters,1); % It is a vector of size numFilters where each cell contains the size of the filter (7,7,7,7,9,9,9,9,11,11,11,11,......,37,37,37,37)
filters = zeros(max(RF_siz)^2,numFilters); % Matrix of Gabor filters of size %max_fSiz x num_filters, where max_fSiz is the length of the largest filter and num_filters the total number of filters. Column j of filters matrix contains a n_jxn_j filter (reshaped as a column vector and padded with zeros).
for k = 1:numFilterSizes
for r = 1:numSimpleFilters
theta = rot(r)*pi/180; % so we get 0, pi/4, pi/2, 3pi/4
filtSize = RF_siz(k);
center = ceil(filtSize/2);
filtSizeL = center-1;
filtSizeR = filtSize-filtSizeL-1;
sigmaq = sigma(k)^2;
for i = -filtSizeL:filtSizeR
for j = -filtSizeL:filtSizeR
if ( sqrt(i^2+j^2)>filtSize/2 )
E = 0;
else
x = i*cos(theta) - j*sin(theta);
y = i*sin(theta) + j*cos(theta);
E = exp(-(x^2+G^2*y^2)/(2*sigmaq))*cos(2*pi*x/lambda(k));
end
f(j+center,i+center) = E;
end
end
f = f - mean(mean(f));
f = f ./ sqrt(sum(sum(f.^2)));
p = numSimpleFilters*(k-1) + r;
filters(1:filtSize^2,p)=reshape(f,filtSize^2,1);
fSiz(p)=filtSize;
end
end
% Rebuild all filters (of all sizes)
nFilts = length(fSiz);
for i = 1:nFilts
sqfilter{i} = reshape(filters(1:(fSiz(i)^2),i),fSiz(i),fSiz(i));
%if you will use conv2 to convolve an image with this gabor, so you should also add the equation below. But if you will use imfilter instead of conv2, so do not add the equation below.
sqfilter{i} = sqfilter{i}(end:-1:1,end:-1:1); %flip in order to use conv2 instead of imfilter (%bug_fix 6/28/2007);
convv=imfilter(image_double, sqfilter{i}, 'same', 'conv');
figure;
imagesc(convv);
colormap(gray);
end
As of R2015b release of the Image Processing Toolbox, you can create a Gabor filter bank using the gabor function in the image processing toolbox, and you can apply it to an image using imgaborfilt.
phi = ij*pi/4; % ij = 0, 1, 2, 3
theta = 3;
sigma = 0.65*theta;
filterSize = 7; % 7:2:37
G = zeros(filterSize);
for i=(0:filterSize-1)/filterSize
for j=(0:filterSize-1)/filterSize
xprime= j*cos(phi);
yprime= i*sin(phi);
K = exp(2*pi*theta*sqrt(-1)*(xprime+ yprime));
G(round((i+1)*filterSize),round((j+1)*filterSize)) =...
exp(-(i^2+j^2)/(sigma^2))*K;
end
end