I\'ve got a multidimensional numpy array that I\'m trying to stick into a pandas data frame. I\'d like to flatten the array, and create a pandas index that reflects the pre-
As hpaulj pointed out in a comment, I could add indexing=='ij'
to the meshgrid call:
A = np.random.rand(2,3,4)
dimnames = ['z', 'y', 'x']
ranges = [ np.arange(x) for x in A.shape ]
ix = [ x.flatten() for x in np.meshgrid(*ranges, indexing='ij') ]
for name, col in zip(dimnames, ix):
df[name] = col
df = df.set_index(dimnames).squeeze()
# Compare the results
for ix, val in df.iteritems():
print ix, val == A[ix]
(0, 0, 0) True
(0, 0, 1) True
(0, 0, 2) True
(0, 0, 3) True
(0, 1, 0) True
(0, 1, 1) True
(0, 1, 2) True
(0, 1, 3) True
(0, 2, 0) True
(0, 2, 1) True
(0, 2, 2) True
(0, 2, 3) True
(1, 0, 0) True
(1, 0, 1) True
(1, 0, 2) True
(1, 0, 3) True
(1, 1, 0) True
(1, 1, 1) True
(1, 1, 2) True
(1, 1, 3) True
(1, 2, 0) True
(1, 2, 1) True
(1, 2, 2) True
(1, 2, 3) True
Another possibility, although others maybe faster...
x,y,z = np.indices(A.shape)
df = pd.DataFrame(np.array([p.flatten() for p in [x,y,z,A]]).T
,columns=['x','y','z',0])
My solution is based on this this answer by Divakar involving np.ogrid
. This function should work for any array of any dimension.
def indices_merged_arr(arr):
n = arr.ndim
grid = np.ogrid[tuple(map(slice, arr.shape))]
out = np.empty(arr.shape + (n+1,), dtype=arr.dtype)
for i in range(n):
out[...,i+1] = grid[i]
out[...,0] = arr
out.shape = (-1,n+1)
return out
A = np.array([[[ 0.43793885, 0.40078139, 0.48078691, 0.05334248],
[ 0.76331509, 0.82514441, 0.86169078, 0.86496111],
[ 0.75572665, 0.80860943, 0.79995337, 0.63123724]],
[[ 0.20648946, 0.57042315, 0.71777265, 0.34155005],
[ 0.30843717, 0.39381407, 0.12623462, 0.93481552],
[ 0.3267771 , 0.64097038, 0.30405215, 0.57726629]]])
df = pd.DataFrame(indices_merged_arr(A), columns=list('Axyz'))
df
A x y z
0 0.437939 0.0 0.0 0.0
1 0.400781 0.0 0.0 1.0
2 0.480787 0.0 0.0 2.0
3 0.053342 0.0 0.0 3.0
4 0.763315 0.0 1.0 0.0
5 0.825144 0.0 1.0 1.0
6 0.861691 0.0 1.0 2.0
7 0.864961 0.0 1.0 3.0
8 0.755727 0.0 2.0 0.0
9 0.808609 0.0 2.0 1.0
10 0.799953 0.0 2.0 2.0
11 0.631237 0.0 2.0 3.0
12 0.206489 1.0 0.0 0.0
13 0.570423 1.0 0.0 1.0
14 0.717773 1.0 0.0 2.0
15 0.341550 1.0 0.0 3.0
16 0.308437 1.0 1.0 0.0
17 0.393814 1.0 1.0 1.0
18 0.126235 1.0 1.0 2.0
19 0.934816 1.0 1.0 3.0
20 0.326777 1.0 2.0 0.0
21 0.640970 1.0 2.0 1.0
22 0.304052 1.0 2.0 2.0
23 0.577266 1.0 2.0 3.0
from itertools import product
np.random.seed(0)
A = np.random.rand(2, 3, 4)
x, y, z = A.shape
x_, y_, z_ = zip(*product(range(x), range(y), range(z)))
df = pd.DataFrame(A.flatten()).assign(x=x_, y=y_, z=z_)
>>> df
0 x y z
0 0.548814 0 0 0
1 0.715189 0 0 1
2 0.602763 0 0 2
3 0.544883 0 0 3
4 0.423655 0 1 0
5 0.645894 0 1 1
6 0.437587 0 1 2
7 0.891773 0 1 3
8 0.963663 0 2 0
9 0.383442 0 2 1
10 0.791725 0 2 2
11 0.528895 0 2 3
12 0.568045 1 0 0
13 0.925597 1 0 1
14 0.071036 1 0 2
15 0.087129 1 0 3
16 0.020218 1 1 0
17 0.832620 1 1 1
18 0.778157 1 1 2
19 0.870012 1 1 3
20 0.978618 1 2 0
21 0.799159 1 2 1
22 0.461479 1 2 2
23 0.780529 1 2 3
You could use pd.MultiIndex.from_product:
import numpy as np
import pandas as pd
import string
def using_multiindex(A, columns):
shape = A.shape
index = pd.MultiIndex.from_product([range(s)for s in shape], names=columns)
df = pd.DataFrame({'A': A.flatten()}, index=index).reset_index()
return df
A = np.array([[[ 0.43793885, 0.40078139, 0.48078691, 0.05334248],
[ 0.76331509, 0.82514441, 0.86169078, 0.86496111],
[ 0.75572665, 0.80860943, 0.79995337, 0.63123724]],
[[ 0.20648946, 0.57042315, 0.71777265, 0.34155005],
[ 0.30843717, 0.39381407, 0.12623462, 0.93481552],
[ 0.3267771 , 0.64097038, 0.30405215, 0.57726629]]])
df = using_multiindex(A, list('ZYX'))
yields
Z Y X A
0 0 0 0 0.437939
1 0 0 1 0.400781
2 0 0 2 0.480787
3 0 0 3 0.053342
...
21 1 2 1 0.640970
22 1 2 2 0.304052
23 1 2 3 0.577266
Or if performance is a top priority, consider using senderle's cartesian_product. (See the code, below.)
Here is a benchmark for A with shape (100, 100, 100):
In [321]: %timeit using_cartesian_product(A, columns)
100 loops, best of 3: 13.8 ms per loop
In [318]: %timeit using_multiindex(A, columns)
10 loops, best of 3: 35.6 ms per loop
In [320]: %timeit indices_merged_arr_generic(A, columns)
10 loops, best of 3: 29.1 ms per loop
In [319]: %timeit using_product(A)
1 loop, best of 3: 461 ms per loop
This is the setup I used for the benchmark:
import numpy as np
import pandas as pd
import functools
import itertools as IT
import string
product = IT.product
def cartesian_product_broadcasted(*arrays):
"""
http://stackoverflow.com/a/11146645/190597 (senderle)
"""
broadcastable = np.ix_(*arrays)
broadcasted = np.broadcast_arrays(*broadcastable)
dtype = np.result_type(*arrays)
rows, cols = functools.reduce(np.multiply, broadcasted[0].shape), len(broadcasted)
out = np.empty(rows * cols, dtype=dtype)
start, end = 0, rows
for a in broadcasted:
out[start:end] = a.reshape(-1)
start, end = end, end + rows
return out.reshape(cols, rows).T
def using_cartesian_product(A, columns):
shape = A.shape
coords = cartesian_product_broadcasted(*[np.arange(s, dtype='int') for s in shape])
df = pd.DataFrame(coords, columns=columns)
df['A'] = A.flatten()
return df
def using_multiindex(A, columns):
shape = A.shape
index = pd.MultiIndex.from_product([range(s)for s in shape], names=columns)
df = pd.DataFrame({'A': A.flatten()}, index=index).reset_index()
return df
def indices_merged_arr_generic(arr, columns):
n = arr.ndim
grid = np.ogrid[tuple(map(slice, arr.shape))]
out = np.empty(arr.shape + (n+1,), dtype=arr.dtype)
for i in range(n):
out[...,i] = grid[i]
out[...,-1] = arr
out.shape = (-1,n+1)
df = pd.DataFrame(out, columns=['A']+columns)
return df
def using_product(A):
x, y, z = A.shape
x_, y_, z_ = zip(*product(range(x), range(y), range(z)))
df = pd.DataFrame(A.flatten()).assign(x=x_, y=y_, z=z_)
return df
A = np.random.random((100,100,100))
shape = A.shape
columns = list(string.ascii_uppercase[-len(shape):][::-1])
def ndarray_to_indexed_2d(data):
idx = np.column_stack(np.unravel_index(np.arange(np.product(data.shape[:-1])), data.shape[:-1]))
data2d = np.hstack((idx, data.reshape(np.product(data.shape[:-1]), data.shape[-1])))
return data2d