More Pythonic/Pandaic approach to looping over a pandas Series

后端 未结 4 619
你的背包
你的背包 2021-01-02 17:56

This is most likely something very basic, but I can\'t figure it out. Suppose that I have a Series like this:

s1 = pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3, 4,         


        
相关标签:
4条回答
  • 2021-01-02 18:35

    You could reshape the series s1 using numpy and then sum over the rows such as:

    np.sum(np.array(s1).reshape(len(s1)/3,3), axis = 1)
    

    which results in

    array([ 3,  6,  9, 12], dtype=int64)
    

    EDIT: as MSeifert mentioned in his comment, you can also let numpy compute the length such as:

    np.sum(np.array(s1).reshape(-1, 3), axis=1)
    
    0 讨论(0)
  • 2021-01-02 18:40

    This computes the rolling sum:

    s1.rolling(3).sum()
    

    You simply need to select every third element:

    s1.rolling(3).sum()[2::3]
    

    Output:

    2      3.0
    5      6.0
    8      9.0
    11    12.0
    
    0 讨论(0)
  • 2021-01-02 18:43

    Here's a NumPy approach using np.bincount to handle generic number of elements -

    pd.Series(np.bincount(np.arange(s1.size)//3, s1))
    

    Sample run -

    In [42]: s1 = pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 9, 5])
    
    In [43]: pd.Series(np.bincount(np.arange(s1.size)//3, s1))
    Out[43]: 
    0     3.0
    1     6.0
    2     9.0
    3    12.0
    4    14.0
    dtype: float64
    

    If we are really craving for performance and for case when the length of the series is divisible by the window length, we can get the view into the series with s1.values, then reshape and finally use np.einsum for summation, like so -

    pd.Series(np.einsum('ij->i',s.values.reshape(-1,3)))
    

    Timings with the same benchmark dataset as used in @Nickil Maveli's post -

    In [140]: s = pd.Series(np.repeat(np.arange(10**5), 3))
    
    # @Nickil Maveli's soln
    In [141]: %timeit pd.Series(np.add.reduceat(s.values, np.arange(0, s.shape[0], 3)))
    100 loops, best of 3: 2.07 ms per loop
    
    # Using views+sum
    In [142]: %timeit pd.Series(s.values.reshape(-1,3).sum(1))
    100 loops, best of 3: 2.03 ms per loop
    
    # Using views+einsum
    In [143]: %timeit pd.Series(np.einsum('ij->i',s.values.reshape(-1,3)))
    1000 loops, best of 3: 1.04 ms per loop
    
    0 讨论(0)
  • 2021-01-02 18:50

    You could also use np.add.reduceat by specifying the slices to be reduced at every 3rd element and compute their running sum:

    >>> pd.Series(np.add.reduceat(s1.values, np.arange(0, s1.shape[0], 3)))
    0     3
    1     6
    2     9
    3    12
    dtype: int64
    

    Timing Constraints:

    arr = np.repeat(np.arange(10**5), 3)
    s = pd.Series(arr)
    s.shape
    (300000,)
    
    # @IanS soln
    %timeit s.rolling(3).sum()[2::3]        
    100 loops, best of 3: 15.6 ms per loop
    
    # @Divakar soln
    %timeit pd.Series(np.bincount(np.arange(s.size)//3, s))  
    100 loops, best of 3: 5.44 ms per loop
    
    # @Nikolas Rieble soln
    %timeit pd.Series(np.sum(np.array(s).reshape(len(s)/3,3), axis = 1))  
    100 loops, best of 3: 2.17 ms per loop
    
    # @Nikolas Rieble modified soln
    %timeit pd.Series(np.sum(np.array(s).reshape(-1, 3), axis=1))  
    100 loops, best of 3: 2.15 ms per loop
    
    # @Divakar modified soln
    %timeit pd.Series(s.values.reshape(-1,3).sum(1))
    1000 loops, best of 3: 1.62 ms per loop
    
    # Proposed solution in post
    %timeit pd.Series(np.add.reduceat(s.values, np.arange(0, s.shape[0], 3)))
    1000 loops, best of 3: 1.45 ms per loop
    
    0 讨论(0)
提交回复
热议问题