I am trying to find an efficient algorithm to find permutation of a multiset, given an index.
Ex: given {1, 3, 3}
. All permutations in an ascending lexi
# Python 2
from collections import Counter
from math import factorial
def count_permutations(counter):
values = counter.values()
return (
factorial(sum(values))/reduce(lambda a, v: a * factorial(v), values, 1)
)
def permutation(l, index):
l = sorted(l)
if not index:
return l
counter = Counter(l)
total_count = count_permutations(counter)
acc = 0
for i, v in enumerate(l):
if i > 0 and v == l[i-1]:
continue
count = total_count * counter[v] / len(l)
if acc + count > index:
return [v] + permutation(l[:i] + l[i + 1:], index - acc)
acc += count
raise ValueError("Not enough permutations")
Seems to work as expected
In [17]: for x in range(50): print x, permutation([1, 1, 2, 2, 2], x)
0 [1, 1, 2, 2, 2]
1 [1, 2, 1, 2, 2]
2 [1, 2, 2, 1, 2]
3 [1, 2, 2, 2, 1]
4 [2, 1, 1, 2, 2]
5 [2, 1, 2, 1, 2]
6 [2, 1, 2, 2, 1]
7 [2, 2, 1, 1, 2]
8 [2, 2, 1, 2, 1]
9 [2, 2, 2, 1, 1]
10---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[...]
ValueError: Not enough permutations
Time complexity: O(n^2)
.