I have the following code in pyspark, resulting in a table showing me the different values for a column and their counts. I want to have another column showing what percenta
An example as an alternative if not comfortable with Windowing as the comment alludes to and is the better way to go:
# Running in Databricks, not all stuff required
from pyspark.sql import Row
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql.types import *
#from pyspark.sql.functions import col
data = [("A", "X", 2, 100), ("A", "X", 7, 100), ("B", "X", 10, 100),
("C", "X", 1, 100), ("D", "X", 50, 100), ("E", "X", 30, 100)]
rdd = sc.parallelize(data)
someschema = rdd.map(lambda x: Row(c1=x[0], c2=x[1], val1=int(x[2]), val2=int(x[3])))
df = sqlContext.createDataFrame(someschema)
tot = df.count()
df.groupBy("c1") \
.count() \
.withColumnRenamed('count', 'cnt_per_group') \
.withColumn('perc_of_count_total', (F.col('cnt_per_group') / tot) * 100 ) \
.show()
returns:
+---+-------------+-------------------+
| c1|cnt_per_group|perc_of_count_total|
+---+-------------+-------------------+
| E| 1| 16.666666666666664|
| B| 1| 16.666666666666664|
| D| 1| 16.666666666666664|
| C| 1| 16.666666666666664|
| A| 2| 33.33333333333333|
+---+-------------+-------------------+
I focus on Scala and it seems easier with that. That said, the suggested solution via the comments uses Window which is what I would do in Scala with over().
You can groupby
and aggregate with agg
. For example, for the following DataFrame:
+--------+-----+
|category|value|
+--------+-----+
| a| 1|
| b| 2|
| a| 3|
+--------+-----+
You can use:
import pyspark.sql.functions as F
df.groupby('category').agg(
(F.count('value')).alias('count'),
(F.count('value') / df.count()).alias('percentage')
).show()
Output:
+--------+-----+------------------+
|category|count| percentage|
+--------+-----+------------------+
| b| 1|0.3333333333333333|
| a| 2|0.6666666666666666|
+--------+-----+------------------+
Alternatively, you can use SQL:
df.createOrReplaceTempView('df')
spark.sql(
"""
SELECT category,
COUNT(*) AS count,
COUNT(*) / (SELECT COUNT(*) FROM df) AS ratio
FROM df
GROUP BY category
"""
).show()