I have a dataframe df
:
data = {\'id\':[12,112],
\'idlist\':[[1,5,7,12,112],[5,7,12,111,113]]
}
df=pd.DataFrame.from_dict(data)
Try simple for
loop:
flaglist = []
for i in range(len(df)):
if df.id[i] in df.idlist[i]:
flaglist.append(1)
else:
flaglist.append(0)
df["flag"] = flaglist
df:
id idlist flag
0 12 [1, 5, 7, 12, 112] 1
1 112 [5, 7, 12, 111, 113] 0
To drop rows:
flaglist = []
for i in range(len(df)):
if df.id[i] not in df.idlist[i]:
flaglist.append(i)
df = df.drop(flaglist)
df:
id idlist flag
0 12 [1, 5, 7, 12, 112] 1
Above can be converted to list comprehension for creating a flag column:
df["flag"] = [df.id[i] in df.idlist[i] for i in range(len(df))]
print(df)
# id idlist flag
# 0 12 [1, 5, 7, 12, 112] True
# 1 112 [5, 7, 12, 111, 113] False
or
df["flag"] = [1 if df.id[i] in df.idlist[i] else 0 for i in range(len(df))]
print(df)
# id idlist flag
# 0 12 [1, 5, 7, 12, 112] 1
# 1 112 [5, 7, 12, 111, 113] 0
and for selecting out rows:
flaglist = [i for i in range(len(df)) if df.id[i] in df.idlist[i]]
print(df.iloc[flaglist])
# id idlist
# 0 12 [1, 5, 7, 12, 112]
Use apply
:
df['flag'] = df.apply(lambda x: int(x['id'] in x['idlist']), axis=1)
print (df)
id idlist flag
0 12 [1, 5, 7, 12, 112] 1
1 112 [5, 7, 12, 111, 113] 0
Similar:
df['flag'] = df.apply(lambda x: x['id'] in x['idlist'], axis=1).astype(int)
print (df)
id idlist flag
0 12 [1, 5, 7, 12, 112] 1
1 112 [5, 7, 12, 111, 113] 0
With list comprehension
:
df['flag'] = [int(x[0] in x[1]) for x in df[['id', 'idlist']].values.tolist()]
print (df)
id idlist flag
0 12 [1, 5, 7, 12, 112] 1
1 112 [5, 7, 12, 111, 113] 0
Solutions for filtering:
df = df[df.apply(lambda x: x['id'] in x['idlist'], axis=1)]
print (df)
id idlist
0 12 [1, 5, 7, 12, 112]
df = df[[x[0] in x[1] for x in df[['id', 'idlist']].values.tolist()]]
print (df)
id idlist
0 12 [1, 5, 7, 12, 112]
You can use df.apply
and process each row and create a new column flag that will check the condition and give you result as second output requested.
df['flag'] = df.loc[:, ('id', 'idlist')].apply(lambda x: 1 if x[0] in x[1] else 0, axis=1)
print(df)
where x[0] is id
and x[1] is idlist
By using issubset
df.apply(lambda x : set([x.id]).issubset(x.idlist),1).astype(int)
Out[378]:
0 1
1 0
dtype: int32
By using np.vectorize
def myfun(x,y):
return np.in1d(x,y)
np.vectorize(myfun)(df.id,df.idlist).astype(int)
Timing :
%timeit np.vectorize(myfun)(df.id,df.idlist).astype(int)
10000 loops, best of 3: 92.3 µs per loop
%timeit df.apply(lambda x : set([x.id]).issubset(x.idlist),1).astype(int)
1000 loops, best of 3: 353 µs per loop