Can you please let me know what is incorrect in below DFS code. It\'s giving correct result AFAIK, but I don\'t know when it will fail.
graph1 = {
\'A\'
DFS implementation in Python
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
def addEdge(self, u, v):
self.graph[u].append(v)
def DFSUtil(self, v, visited):
visited[v]=True
print(v)
for i in self.graph[v]:
if visited[i] == False:
self.DFSUtil(i, visited)
def DFS(self):
V = len(self.graph)
visited = [False]*(V)
for i in range(V):
if visited[i] == False:
self.DFSUtil(i, visited)
# Driver code
# Create a graph given in the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
print("Following is Depth First Traversal")
g.DFS()
Source :: this
Here is a more versatile algorithm, the one asked in the question works only for undirected graphs. But this hopefully works for both them. Check it out
graph1= {
'A' : ['B','S'],
'B' : [],
'C' : ['E','S'],
'D' : ['C'],
'E' : ['H'],
'F' : ['C'],
'G' : ['F','S'],
'H' : ['G'],
'S' : []
}
visited = []
def dfs_visit(graph, s):
global visited
for v in graph[s]:
if v not in visited:
visited.append(v)
dfs_visit(graph, v)
def dfs(graph):
global visited
for v in [*graph]:
if v not in visited:
visited.append(v)
dfs_visit(graph,v)
dfs(graph1)
print(visited)
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
def addEdge(self,u,v):
self.graph[u].append(v)
def DFS(self,v,vertex):
visited = [False]*vertex
print(self. graph)
# print(len(self.graph),"+++")
self.DFSUtil(v,visited)
def DFSUtil(self,v,visited):
visited[v]=True
print(v)
for i in self.graph[v]:
if visited[i] == False:
# print(visited)
self.DFSUtil(i,visited)
g= Graph()
vertex=7
g.addEdge(0,1)
g.addEdge(0,2)
g.addEdge(0,6)
g.addEdge(0,5)
g.addEdge(5,3)
g.addEdge(5,4)
g.addEdge(4,3)
g.addEdge(6,4)
g.DFS(0,vertex)
This is the modification for the above code because that doesn't work with in all cases.
We have to specify the number of vectors and then give edges manually.
graph = {'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']}
def dfs(s,d):
def dfs_helper(s,d):
if s == d:
return True
if s in visited :
return False
visited.add(s)
for c in graph[s]:
dfs_helper(c,d)
return False
visited = set()
return dfs_helper(s,d)
dfs('A','E') ---- True
dfs('A','M') ---- False
Without recursion:
def dfs(graph, node):
visited = [node]
stack = [node]
while stack:
node = stack[-1]
if node not in visited:
visited.extend(node)
remove_from_stack = True
for next in graph[node]:
if next not in visited:
stack.extend(next)
remove_from_stack = False
break
if remove_from_stack:
stack.pop()
return visited
print (dfs(graph1, 'A'))
Output:
['A', 'B', 'S', 'C', 'D', 'E', 'H', 'G', 'F']
Here's an iterative (non-recursive) implementation of a DFS:
def dfs_iterative(graph, start_vertex):
visited = set()
traversal = []
stack = [start_vertex]
while stack:
vertex = stack.pop()
if vertex not in visited:
visited.add(vertex)
traversal.append(vertex)
stack.extend(reversed(graph[vertex])) # add vertex in the same order as visited
return traversal
test_graph = {
'A' : ['B','S'],
'B' : ['A'],
'C' : ['D','E','F','S'],
'D' : ['C'],
'E' : ['C','H'],
'F' : ['C','G'],
'G' : ['F','S'],
'H' : ['E','G'],
'S' : ['A','C','G']
}
print(dfs_iterative(test_graph, 'A'))
Output:
['A', 'B', 'S', 'C', 'D', 'E', 'H', 'G', 'F']