I built a custom architecture with keras (a convnet). The network has 4 heads, each outputting a tensor of different size. I am trying to write a custom loss function as a f
You could try the model.add_loss()
function. The idea is to construct your custom loss as a tensor instead of a function, add it to the model, and compile the model without further specifying a loss. See also this implementation of a variational autoencoder where a similar idea is used.
Example:
import keras.backend as K
from keras.layers import Input, Dense
from keras.models import Model
from keras.losses import mse
import numpy as np
# Some random training data
features = np.random.rand(100,20)
labels_1 = np.random.rand(100,4)
labels_2 = np.random.rand(100,1)
# Input layer, one hidden layer
input_layer = Input((20,))
dense_1 = Dense(128)(input_layer)
# Two outputs
output_1 = Dense(4)(dense_1)
output_2 = Dense(1)(dense_1)
# Two additional 'inputs' for the labels
label_layer_1 = Input((4,))
label_layer_2 = Input((1,))
# Instantiate model, pass label layers as inputs
model = Model(inputs=[input_layer, label_layer_1, label_layer_2], outputs=[output_1, output_2])
# Construct your custom loss as a tensor
loss = K.mean(mse(output_1, label_layer_1) * mse(output_2, label_layer_2))
# Add loss to model
model.add_loss(loss)
# Compile without specifying a loss
model.compile(optimizer='sgd')
dummy = np.zeros((100,))
model.fit([features, labels_1, labels_2], dummy, epochs=2)