I have time-series data, as followed:
emplvl
date
2003-01-01 10955.000000
2003-04-01 11090.333333
2003-07-01 11157.0
Here's a quick example on how to do this using pandas.ols
:
import matplotlib.pyplot as plt
import pandas as pd
x = pd.Series(np.arange(50))
y = pd.Series(10 + (2 * x + np.random.randint(-5, + 5, 50)))
regression = pd.ols(y=y, x=x)
regression.summary
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 50
Number of Degrees of Freedom: 2
R-squared: 0.9913
Adj R-squared: 0.9911
Rmse: 2.7625
F-stat (1, 48): 5465.1446, p-value: 0.0000
Degrees of Freedom: model 1, resid 48
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x 2.0013 0.0271 73.93 0.0000 1.9483 2.0544
intercept 9.5271 0.7698 12.38 0.0000 8.0183 11.0358
---------------------------------End of Summary---------------------------------
trend = regression.predict(beta=regression.beta, x=x[20:]) # slicing to only use last 30 points
data = pd.DataFrame(index=x, data={'y': y, 'trend': trend})
data.plot() # add kwargs for title and other layout/design aspects
plt.show() # or plt.gcf().savefig(path)
In general you should create your matplotlib figure and axes object ahead of time, and explicitly plot the dataframe on that:
from matplotlib import pyplot
import pandas
import statsmodels.api as sm
df = pandas.read_csv(...)
fig, ax = pyplot.subplots()
df.plot(x='xcol', y='ycol', ax=ax)
Then you still have that axes object around to use directly to plot your line:
model = sm.formula.ols(formula='ycol ~ xcol', data=df)
res = model.fit()
df.assign(fit=res.fittedvalues).plot(x='xcol', y='fit', ax=ax)