I\'m trying to understand the expected behavior of DataFrame.sort on columns with NaN values.
Given this DataFrame:
In [36]: df
Out[36]:
a b
0
Until fixed in Pandas, this is what I'm using for sorting for my needs, with a subset of the functionality of the original DataFrame.sort function. This will work for numerical values only:
def dataframe_sort(df, columns, ascending=True):
a = np.array(df[columns])
# ascending/descending array - -1 if descending, 1 if ascending
if isinstance(ascending, bool):
ascending = len(columns) * [ascending]
ascending = map(lambda x: x and 1 or -1, ascending)
ind = np.lexsort([ascending[i] * a[:, i] for i in reversed(range(len(columns)))])
return df.iloc[[ind]]
Usage example:
In [4]: df
Out[4]:
a b c
10 1 9 7
11 NaN NaN 1
12 2 NaN 6
13 NaN 5 6
14 1 2 6
15 6 5 NaN
16 8 4 4
17 4 5 3
In [5]: dataframe_sort(df, ['a', 'c'], False)
Out[5]:
a b c
16 8 4 4
15 6 5 NaN
17 4 5 3
12 2 NaN 6
10 1 9 7
14 1 2 6
13 NaN 5 6
11 NaN NaN 1
In [6]: dataframe_sort(df, ['b', 'a'], [False, True])
Out[6]:
a b c
10 1 9 7
17 4 5 3
15 6 5 NaN
13 NaN 5 6
16 8 4 4
14 1 2 6
12 2 NaN 6
11 NaN NaN 1