How to get classification probabilities from PySpark MultilayerPerceptronClassifier?

后端 未结 1 1292
暖寄归人
暖寄归人 2021-01-02 07:19

I\'m using Spark 2.0.1 in python, my dataset is in DataFrame, so I\'m using the ML (not MLLib) library for machine learning. I have a multilayer perceptron classifier and I

相关标签:
1条回答
  • 2021-01-02 07:23

    Indeed, as of version 2.0, MLP in Spark ML does not seem to provide classification probabilities; nevertheless, there are a number of other classifiers doing so, i.e. Logistic Regression, Naive Bayes, Decision Tree, and Random Forest. Here is a short example with the first and the last one:

    from pyspark.ml.classification import LogisticRegression, RandomForestClassifier
    from pyspark.ml.linalg import Vectors
    from pyspark.sql import Row
    df = sqlContext.createDataFrame([
         (0.0, Vectors.dense(0.0, 1.0)),
         (1.0, Vectors.dense(1.0, 0.0))], 
         ["label", "features"])
    df.show()
    # +-----+---------+ 
    # |label| features| 
    # +-----+---------+ 
    # | 0.0 |[0.0,1.0]| 
    # | 1.0 |[1.0,0.0]| 
    # +-----+---------+
    
    lr = LogisticRegression(maxIter=5, regParam=0.01, labelCol="label")
    lr_model = lr.fit(df)
    
    rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="label", seed=42)
    rf_model = rf.fit(df)
    
    # test data:
    test = sc.parallelize([Row(features=Vectors.dense(0.2, 0.5)),
                           Row(features=Vectors.dense(0.5, 0.2))]).toDF()
    
    lr_result = lr_model.transform(test)
    lr_result.show()
    # +---------+--------------------+--------------------+----------+
    # | features|       rawPrediction|         probability|prediction|
    # +---------+--------------------+--------------------+----------+
    # |[0.2,0.5]|[0.98941878916476...|[0.72897310704261...|       0.0|
    # |[0.5,0.2]|[-0.9894187891647...|[0.27102689295738...|       1.0|  
    # +---------+--------------------+--------------------+----------+
    
    rf_result = rf_model.transform(test)
    rf_result.show()
    # +---------+-------------+--------------------+----------+ 
    # | features|rawPrediction|         probability|prediction| 
    # +---------+-------------+--------------------+----------+ 
    # |[0.2,0.5]|    [1.0,2.0]|[0.33333333333333...|       1.0| 
    # |[0.5,0.2]|    [1.0,2.0]|[0.33333333333333...|       1.0| 
    # +---------+-------------+--------------------+----------+
    

    For MLlib, see my answer here; for several undocumented & counter-intuitive features of PySpark classification, see my relevant blog post.

    0 讨论(0)
提交回复
热议问题