Replacement for deprecated tsplot

前端 未结 2 453
渐次进展
渐次进展 2021-01-02 05:14

I have a time-series with uniform samples save to a numpy array and I\'d like to plot their mean value with a bootstrapped confidence interval. Typically, I\'ve used t

相关标签:
2条回答
  • 2021-01-02 05:37

    The example tsplot from the question can easily be replicated using matplotlib.

    Using standard deviation as error estimate

    import numpy as np; np.random.seed(1)
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    x = np.linspace(0, 15, 31)
    data = np.sin(x) + np.random.rand(10, 31) + np.random.randn(10, 1)
    
    
    fig, (ax,ax2) = plt.subplots(ncols=2, sharey=True)
    ax = sns.tsplot(data=data,ax=ax, ci="sd")
    
    def tsplot(ax, data,**kw):
        x = np.arange(data.shape[1])
        est = np.mean(data, axis=0)
        sd = np.std(data, axis=0)
        cis = (est - sd, est + sd)
        ax.fill_between(x,cis[0],cis[1],alpha=0.2, **kw)
        ax.plot(x,est,**kw)
        ax.margins(x=0)
    
    tsplot(ax2, data)
    
    ax.set_title("sns.tsplot")
    ax2.set_title("custom tsplot")
    
    plt.show()
    

    Using bootstrapping for error estimate

    import numpy as np; np.random.seed(1)
    from scipy import stats
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    x = np.linspace(0, 15, 31)
    data = np.sin(x) + np.random.rand(10, 31) + np.random.randn(10, 1)
    
    
    fig, (ax,ax2) = plt.subplots(ncols=2, sharey=True)
    ax = sns.tsplot(data=data,ax=ax)
    
    def bootstrap(data, n_boot=10000, ci=68):
        boot_dist = []
        for i in range(int(n_boot)):
            resampler = np.random.randint(0, data.shape[0], data.shape[0])
            sample = data.take(resampler, axis=0)
            boot_dist.append(np.mean(sample, axis=0))
        b = np.array(boot_dist)
        s1 = np.apply_along_axis(stats.scoreatpercentile, 0, b, 50.-ci/2.)
        s2 = np.apply_along_axis(stats.scoreatpercentile, 0, b, 50.+ci/2.)
        return (s1,s2)
        
    def tsplotboot(ax, data,**kw):
        x = np.arange(data.shape[1])
        est = np.mean(data, axis=0)
        cis = bootstrap(data)
        ax.fill_between(x,cis[0],cis[1],alpha=0.2, **kw)
        ax.plot(x,est,**kw)
        ax.margins(x=0)
    
    tsplotboot(ax2, data)
    
    ax.set_title("sns.tsplot")
    ax2.set_title("custom tsplot")
    
    plt.show()
    


    I guess the reason this is deprecated is exactly that the use of this function is rather limited and in most cases you are better off just plotting the data you want to plot directly.

    0 讨论(0)
  • 2021-01-02 06:01

    The replacement for tsplot called lineplot was introduced in version 0.9.0. It doesn't support Numpy-like "wide-form" data, thus the data has to be transformed using Pandas.

    x = np.linspace(0, 15, 31)
    data = np.sin(x) + np.random.rand(10, 31) + np.random.randn(10, 1)
    df = pd.DataFrame(data).melt()
    sns.lineplot(x="variable", y="value", data=df)
    
    0 讨论(0)
提交回复
热议问题