What is the most efficient wildcard string matching algorithm? I am asking only about an idea, it is not necessary to provide actual code.
I\'m thinking that such al
O(n log m) is correct. See http://www.cs.bris.ac.uk/Publications/Papers/2000602.pdf
Hope this helps...
Depending on the wildcard "language", I'd (probably) simply write a wildcard->regexp compiler and use the (commonly provided) regexp engine to do the actual matching. It's a bit lazy, but unless there's an actual performance problem doing it that way, it'd be fast enough.
If your pattern can contain only *
wild cards, then the trivial implementation is as fast as possible. The main thing to realize in this case, is that you only need to look for each card once (card = segment between stars).
Here is an implementation (supporting only *
wild cards):
#include <cstddef>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <iostream>
using namespace std;
class wildcard_pattern {
public:
explicit wildcard_pattern(const string& text);
bool match(const char* begin, const char* end) const;
bool match(const char* c_str) const;
private:
string m_text;
struct card {
size_t m_offset, m_size;
card(size_t begin, size_t end);
};
// Must contain at least one card. The first, and the last card
// may be empty strings. All other cards must be non-empty. If
// there is exactly one card, the pattern matches a string if, and
// only if the string is equal to the card. Otherwise, the first
// card must be a prefix of the string, and the last card must be
// a suffix.
vector<card> m_cards;
};
wildcard_pattern::wildcard_pattern(const string& text):
m_text(text)
{
size_t pos = m_text.find('*');
if (pos == string::npos) {
m_cards.push_back(card(0, m_text.size()));
return;
}
m_cards.push_back(card(0, pos));
++pos;
for (;;) {
size_t pos_2 = m_text.find('*', pos);
if (pos_2 == string::npos)
break;
if (pos_2 != pos)
m_cards.push_back(card(pos, pos_2));
pos = pos_2 + 1;
}
m_cards.push_back(card(pos, m_text.size()));
}
bool wildcard_pattern::match(const char* begin, const char* end) const
{
const char* begin_2 = begin;
const char* end_2 = end;
size_t num_cards = m_cards.size();
typedef string::const_iterator str_iter;
// Check anchored prefix card
{
const card& card = m_cards.front();
if (size_t(end_2 - begin_2) < card.m_size)
return false;
str_iter card_begin = m_text.begin() + card.m_offset;
if (!equal(begin_2, begin_2 + card.m_size, card_begin))
return false;
begin_2 += card.m_size;
}
if (num_cards == 1)
return begin_2 == end_2;
// Check anchored suffix card
{
const card& card = m_cards.back();
if (size_t(end_2 - begin_2) < card.m_size)
return false;
str_iter card_begin = m_text.begin() + card.m_offset;
if (!equal(end_2 - card.m_size, end_2, card_begin))
return false;
end_2 -= card.m_size;
}
// Check unanchored infix cards
for (size_t i = 1; i != num_cards-1; ++i) {
const card& card = m_cards[i];
str_iter card_begin = m_text.begin() + card.m_offset;
str_iter card_end = card_begin + card.m_size;
begin_2 = search(begin_2, end_2, card_begin, card_end);
if (begin_2 == end_2)
return false;
begin_2 += card.m_size;
}
return true;
}
inline bool wildcard_pattern::match(const char* c_str) const
{
const char* begin = c_str;
const char* end = begin + strlen(c_str);
return match(begin, end);
}
inline wildcard_pattern::card::card(size_t begin, size_t end)
{
m_offset = begin;
m_size = end - begin;
}
int main(int, const char* argv[])
{
wildcard_pattern pat(argv[1]);
cout << pat.match(argv[2]) << endl;
}
Hm, I think that normal pattern matching rules would apply here. Usually, since you have a stream of data and short patterns, you would not need to implement something more efficient than linear. However, the longer the pattern gets, the more room there is for optimization.
What kind of wildcard do you have in mind? a one-character-wildcard (e.g. .
in regex), or a multiple-character-wildcard (e.g. .*
)? Are there limitations? What is the expected pattern length, and do you have random or serial access to the data to be checked?
There is a paper covering the fastest options here http://swtch.com/~rsc/regexp/regexp1.html in particular it allows you avoid naive algorithms that become pathologically slow when long patterns are used.
It covers generic regular expressions but you can limit your implementation to the subset you require.
I was looking for a simple wildcard matching algorithm which runs in polynomial time. E.g. this one is simple, but doesn't run in polynomial time when the pattern contains many stars (*): http://www.codeproject.com/Articles/188256/A-Simple-Wildcard-Matching-Function Below is the code which uses dynamic programming to reduce the time complexity to O(n*m) where n is the length of the text and m is the length of the pattern.
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
const int UNKNOWN = -1;
const int NOMATCH = 0;
const int MATCHES = 1;
class Wildcard {
string _text;
string _pattern;
vector<vector<int>> _mf;
int F(int n, int m) {
if (_mf[n][m] >= 0) return _mf[n][m];
if (n == 0 && m == 0) {
_mf[n][m] = MATCHES;
return _mf[n][m];
}
if (n > 0 && m == 0) {
_mf[n][m] = NOMATCH;
return _mf[n][m];
}
// m > 0
int ans = NOMATCH;
if (_pattern[m - 1] == '*') {
ans = max(ans, F(n, m-1));
if (n > 0) {
ans = max(ans, F(n - 1, m));
}
}
if (n > 0) {
if (_pattern[m - 1] == '?' || _pattern[m - 1] == _text[n - 1]) {
ans = max(ans, F(n - 1, m - 1));
}
}
_mf[n][m] = ans;
return _mf[n][m];
}
public:
bool match(string text, string pattern) {
_text = text;
_pattern = pattern;
_mf.clear();
for (int i = 0; i <= _text.size(); i++) {
_mf.push_back(vector<int>());
for (int j = 0; j <= _pattern.size(); j++) {
_mf[i].push_back(UNKNOWN); // not calculated
}
}
int ans = F(_text.size(), _pattern.size());
return ans == MATCHES;
}
};