I have a file containing logged events. Each entry has a time and latency. I\'m interested in plotting the cumulative distribution function of the latencies. I\'m most inter
Essentially you need to apply the following transformation to your Y
values: -log10(1-y)
. This imposes the only limitation that y < 1
, so you should be able to have negative values on the transformed plot.
Here's a modified example from matplotlib
documentation that shows how to incorporate custom transformations into "scales":
import numpy as np
from numpy import ma
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import FixedFormatter, FixedLocator
class CloseToOne(mscale.ScaleBase):
name = 'close_to_one'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.nines = kwargs.get('nines', 5)
def get_transform(self):
return self.Transform(self.nines)
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(FixedLocator(
np.array([1-10**(-k) for k in range(1+self.nines)])))
axis.set_major_formatter(FixedFormatter(
[str(1-10**(-k)) for k in range(1+self.nines)]))
def limit_range_for_scale(self, vmin, vmax, minpos):
return vmin, min(1 - 10**(-self.nines), vmax)
class Transform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, nines):
mtransforms.Transform.__init__(self)
self.nines = nines
def transform_non_affine(self, a):
masked = ma.masked_where(a > 1-10**(-1-self.nines), a)
if masked.mask.any():
return -ma.log10(1-a)
else:
return -np.log10(1-a)
def inverted(self):
return CloseToOne.InvertedTransform(self.nines)
class InvertedTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, nines):
mtransforms.Transform.__init__(self)
self.nines = nines
def transform_non_affine(self, a):
return 1. - 10**(-a)
def inverted(self):
return CloseToOne.Transform(self.nines)
mscale.register_scale(CloseToOne)
if __name__ == '__main__':
import pylab
pylab.figure(figsize=(20, 9))
t = np.arange(-0.5, 1, 0.00001)
pylab.subplot(121)
pylab.plot(t)
pylab.subplot(122)
pylab.plot(t)
pylab.yscale('close_to_one')
pylab.grid(True)
pylab.show()
Note that you can control the number of 9's via a keyword argument:
pylab.figure()
pylab.plot(t)
pylab.yscale('close_to_one', nines=3)
pylab.grid(True)
Ok, this isn't the cleanest code, but I can't see a way around it. Maybe what I'm really asking for isn't a logarithmic CDF, but I'll wait for a statistician to tell me otherwise. Anyway, here is what I came up with:
# retrieve event times and latencies from the file
times, latencies = read_in_data_from_file('myfile.csv')
cdfx = numpy.sort(latencies)
cdfy = numpy.linspace(1 / len(latencies), 1.0, len(latencies))
# find the logarithmic CDF and ylabels
logcdfy = [-math.log10(1.0 - (float(idx) / len(latencies)))
for idx in range(len(latencies))]
labels = ['', '90', '99', '99.9', '99.99', '99.999', '99.9999', '99.99999']
labels = labels[0:math.ceil(max(logcdfy))+1]
# plot the logarithmic CDF
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
axes.scatter(cdfx, logcdfy, s=4, linewidths=0)
axes.set_xlim(min(latencies), max(latencies) * 1.01)
axes.set_ylim(0, math.ceil(max(logcdfy)))
axes.set_yticklabels(labels)
plt.show()
The messy part is where I change the yticklabels. The logcdfy
variable will hold values between 0 and 10, and in my example it was between 0 and 6. In this code, I swap the labels with percentiles. The plot
function could also be used but I like the way the scatter
function shows the outliers on the tail. Also, I choose not to make the x-axis on a log scale because my particular data has a good linear line without it.