I have a Sender
class that sends a Message
on a IChannel
:
public class MessageEventArgs : EventArgs {
public Message
Perhaps your MessageReceived method should simply flag a value to a property of your IChannel interface, while implementing the INotifyPropertyChanged event handler, so that you would be advised when the property is changed.
By doing so, your Sender class could loop until the max waiting time is elapsed, or whenever the PropertyChanged event handler occurs, breaking the loop succesfully. If your loop doesn't get broken, then the message shall be considered as never received.
Useful sample with AutoResetEvent:
using System;
using System.Threading;
class WaitOne
{
static AutoResetEvent autoEvent = new AutoResetEvent(false);
static void Main()
{
Console.WriteLine("Main starting.");
ThreadPool.QueueUserWorkItem(
new WaitCallback(WorkMethod), autoEvent);
// Wait for work method to signal.
autoEvent.WaitOne();
Console.WriteLine("Work method signaled.\nMain ending.");
}
static void WorkMethod(object stateInfo)
{
Console.WriteLine("Work starting.");
// Simulate time spent working.
Thread.Sleep(new Random().Next(100, 2000));
// Signal that work is finished.
Console.WriteLine("Work ending.");
((AutoResetEvent)stateInfo).Set();
}
}
Have you tried assigning the function to call asynchronously to a delegate, then invoking the mydelegateinstance.BeginInvoke?
Linky for reference.
With the below example, just call
FillDataSet(ref table, ref dataset);
and it'll work as if by magic. :)
#region DataSet manipulation
///<summary>Fills a the distance table of a dataset</summary>
private void FillDataSet(ref DistanceDataTableAdapter taD, ref MyDataSet ds) {
using (var myMRE = new ManualResetEventSlim(false)) {
ds.EnforceConstraints = false;
ds.Distance.BeginLoadData();
Func<DistanceDataTable, int> distanceFill = taD.Fill;
distanceFill.BeginInvoke(ds.Distance, FillCallback<DistanceDataTable>, new object[] { distanceFill, myMRE });
WaitHandle.WaitAll(new []{ myMRE.WaitHandle });
ds.Distance.EndLoadData();
ds.EnforceConstraints = true;
}
}
/// <summary>
/// Callback used when filling a table asynchronously.
/// </summary>
/// <param name="result">Represents the status of the asynchronous operation.</param>
private void FillCallback<MyDataTable>(IAsyncResult result) where MyDataTable: DataTable {
var state = result.AsyncState as object[];
Debug.Assert((state != null) && (state.Length == 2), "State variable is either null or an invalid number of parameters were passed.");
var fillFunc = state[0] as Func<MyDataTable, int>;
var mre = state[1] as ManualResetEventSlim;
Debug.Assert((mre != null) && (fillFunc != null));
int rowsAffected = fillFunc.EndInvoke(result);
Debug.WriteLine(" Rows: " + rowsAffected.ToString());
mre.Set();
}
Use a AutoResetEvent
.
Gimme a few minutes and I'll throw together a sample.
Here it is:
public class Sender
{
public static readonly TimeSpan MaxWait = TimeSpan.FromMilliseconds(5000);
private IChannel _c;
private AutoResetEvent _messageReceived;
public Sender()
{
// initialize _c
this._messageReceived = new AutoResetEvent(false);
this._c.MessageReceived += this.MessageReceived;
}
public Message Send(Message m)
{
this._c.Send(m);
// wait for MaxWaitInMs to get an event from _c.MessageReceived
// return the message or null if no message was received in response
// This will wait for up to 5000 ms, then throw an exception.
this._messageReceived.WaitOne(MaxWait);
return null;
}
public void MessageReceived(object sender, MessageEventArgs e)
{
//Do whatever you need to do with the message
this._messageReceived.Set();
}
}
WaitOne
is really the right tool for this job. In short, you want to wait between 0 and MaxWaitInMs
milliseconds for a job to complete. You really have two choices, poll for completion or synchronize the threads with some construct that can wait an arbitrary amount of time.
Since you're well aware of the right way to do this, for posterity I'll post the polling version:
MessageEventArgs msgArgs = null;
var callback = (object o, MessageEventArgs args) => {
msgArgs = args;
};
_c.MessageReceived += callback;
_c.Send(m);
int msLeft = MaxWaitInMs;
while (msgArgs == null || msLeft >= 0) {
Thread.Sleep(100);
msLeft -= 100; // you should measure this instead with say, Stopwatch
}
_c.MessageRecieved -= callback;