Spark train test split

后端 未结 4 1490
难免孤独
难免孤独 2021-01-01 20:51

I am curious if there is something similar to sklearn\'s http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html for apache-spa

相关标签:
4条回答
  • 2021-01-01 21:00

    Let's assume we have a dataset like this:

    +---+-----+
    | id|label|
    +---+-----+
    |  0|  0.0|
    |  1|  1.0|
    |  2|  0.0|
    |  3|  1.0|
    |  4|  0.0|
    |  5|  1.0|
    |  6|  0.0|
    |  7|  1.0|
    |  8|  0.0|
    |  9|  1.0|
    +---+-----+
    

    This dataset is perfectly balanced, but this approach will work for unbalanced data as well.

    Now, let's augment this DataFrame with additional information that will be useful in deciding which rows should go to train set. The steps are as follows:

    • Determine how many examples of every label should be a part of train set given some ratio.
    • Shuffle the rows of the DataFrame.
    • Use window function to partition and order the DataFrame by label and then rank each label's observations using row_number().

    We end up with the following data frame:

    +---+-----+----------+
    | id|label|row_number|
    +---+-----+----------+
    |  6|  0.0|         1|
    |  2|  0.0|         2|
    |  0|  0.0|         3|
    |  4|  0.0|         4|
    |  8|  0.0|         5|
    |  9|  1.0|         1|
    |  5|  1.0|         2|
    |  3|  1.0|         3|
    |  1|  1.0|         4|
    |  7|  1.0|         5|
    +---+-----+----------+
    

    Note: the rows are shuffled (see: random order in id column), partitioned by label (see: label column) and ranked.

    Let's assume that we would like to make 80% split. In this case, we would like four 1.0 labels and four 0.0 labels to go to training dataset and one 1.0 label and one 0.0 label to go to test dataset. We have this information in row_number column, so now we can simply use it in user defined function (if row_number is less or equal four, the example goes to train set).

    After applying the UDF, the resulting data frame is as follows:

    +---+-----+----------+----------+
    | id|label|row_number|isTrainSet|
    +---+-----+----------+----------+
    |  6|  0.0|         1|      true|
    |  2|  0.0|         2|      true|
    |  0|  0.0|         3|      true|
    |  4|  0.0|         4|      true|
    |  8|  0.0|         5|     false|
    |  9|  1.0|         1|      true|
    |  5|  1.0|         2|      true|
    |  3|  1.0|         3|      true|
    |  1|  1.0|         4|      true|
    |  7|  1.0|         5|     false|
    +---+-----+----------+----------+
    

    Now, to get the train/test data one has to do:

    val train = df.where(col("isTrainSet") === true)
    val test = df.where(col("isTrainSet") === false)
    

    These sorting and partitioning steps might be prohibitive for some really big datasets, so I suggest first filtering the dataset as much as possible. The physical plan is as follows:

    == Physical Plan ==
    *(3) Project [id#4, label#5, row_number#11, if (isnull(row_number#11)) null else UDF(label#5, row_number#11) AS isTrainSet#48]
    +- Window [row_number() windowspecdefinition(label#5, label#5 ASC NULLS FIRST, specifiedwindowframe(RowFrame, unboundedpreceding$(), currentrow$())) AS row_number#11], [label#5], [label#5 ASC NULLS FIRST]
       +- *(2) Sort [label#5 ASC NULLS FIRST, label#5 ASC NULLS FIRST], false, 0
          +- Exchange hashpartitioning(label#5, 200)
             +- *(1) Project [id#4, label#5]
                +- *(1) Sort [_nondeterministic#9 ASC NULLS FIRST], true, 0
                   +- Exchange rangepartitioning(_nondeterministic#9 ASC NULLS FIRST, 200)
                      +- LocalTableScan [id#4, label#5, _nondeterministic#9
    

    Here's full working example (tested with Spark 2.3.0 and Scala 2.11.12):

    import org.apache.spark.SparkConf
    import org.apache.spark.sql.expressions.Window
    import org.apache.spark.sql.{DataFrame, Row, SparkSession}
    import org.apache.spark.sql.functions.{col, row_number, udf, rand}
    
    class StratifiedTrainTestSplitter {
    
      def getNumExamplesPerClass(ss: SparkSession, label: String, trainRatio: Double)(df: DataFrame): Map[Double, Long] = {
        df.groupBy(label).count().createOrReplaceTempView("labelCounts")
        val query = f"SELECT $label AS ratioLabel, count, cast(count * $trainRatio as long) AS trainExamples FROM labelCounts"
        import ss.implicits._
        ss.sql(query)
          .select("ratioLabel", "trainExamples")
          .map((r: Row) => r.getDouble(0) -> r.getLong(1))
          .collect()
          .toMap
      }
    
      def split(df: DataFrame, label: String, trainRatio: Double): DataFrame = {
        val w = Window.partitionBy(col(label)).orderBy(col(label))
    
        val rowNumPartitioner = row_number().over(w)
    
        val dfRowNum = df.sort(rand).select(col("*"), rowNumPartitioner as "row_number")
    
        dfRowNum.show()
    
        val observationsPerLabel: Map[Double, Long] = getNumExamplesPerClass(df.sparkSession, label, trainRatio)(df)
    
        val addIsTrainColumn = udf((label: Double, rowNumber: Int) => rowNumber <= observationsPerLabel(label))
    
        dfRowNum.withColumn("isTrainSet", addIsTrainColumn(col(label), col("row_number")))
      }
    
    
    }
    
    object StratifiedTrainTestSplitter {
    
      def getDf(ss: SparkSession): DataFrame = {
        val data = Seq(
          (0, 0.0), (1, 1.0), (2, 0.0), (3, 1.0), (4, 0.0), (5, 1.0), (6, 0.0), (7, 1.0), (8, 0.0), (9, 1.0)
        )
        ss.createDataFrame(data).toDF("id", "label")
      }
    
      def main(args: Array[String]): Unit = {
        val spark: SparkSession = SparkSession
          .builder()
          .config(new SparkConf().setMaster("local[1]"))
          .getOrCreate()
    
        val df = new StratifiedTrainTestSplitter().split(getDf(spark), "label", 0.8)
    
        df.cache()
    
        df.where(col("isTrainSet") === true).show()
        df.where(col("isTrainSet") === false).show()
      }
    }
    

    Note: the labels are Doubles in this case. If your labels are Strings you'll have to switch types here and there.

    0 讨论(0)
  • 2021-01-01 21:16

    Spark supports stratified samples as outlined in https://s3.amazonaws.com/sparksummit-share/ml-ams-1.0.1/6-sampling/scala/6-sampling_student.html

    df.stat.sampleBy("label", Map(0 -> .10, 1 -> .20, 2 -> .3), 0)
    
    0 讨论(0)
  • 2021-01-01 21:16

    Although this answer is not specific to Spark, in Apache beam I do this to to split train 66% and test 33% (just an illustrative example, you can customize the partition_fn below to be more sophisticated and accept arguments such to specify the number of buckets or bias selection towards something or assure randomization is fair across dimensions, etc):

    raw_data = p | 'Read Data' >> Read(...)
    
    clean_data = (raw_data
                  | "Clean Data" >> beam.ParDo(CleanFieldsFn())
    
    
    def partition_fn(element):
        return random.randint(0, 2)
    
    random_buckets = (clean_data | beam.Partition(partition_fn, 3))
    
    clean_train_data = ((random_buckets[0], random_buckets[1])
                        | beam.Flatten())
    
    clean_eval_data = random_buckets[2]

    0 讨论(0)
  • 2021-01-01 21:20

    Perhaps this method wasn't available when the OP posted this question, but I'm leaving this here for future reference:

    # splitting dataset into train and test set
    (train test) = df.randomSplit([0.7, 0.3], seed=42)
    
    0 讨论(0)
提交回复
热议问题