I have a python / matplotlib application that frequently updates a plot with new data coming in from a measurement instrument. The plot window should not change from backgro
matplotlib was changed somewhere from version 1.5.2rc to 2.0.0 such that pyplot.show() brings the window to the foreground (see here). The key is therefore to avoid calling pyplot.show()
in the loop. The same goes for pyplot.pause()
.
Below is a working example. This will still bring the window to the foreground at the beginning. But the user may move the window to the background, and the window will stay there when the figure is updated with new data.
Note that the matplotlib animation module might be a good choice to produce the plot shown in this example. However, I couldn't make the animation work with interactive plot, so it blocks further execution of other code. That's why I could not use the animation module in my real-life application.
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import time
from random import random
print ( matplotlib.__version__ )
# set up the figure
plt.ion()
fig = plt.figure()
ax = plt.subplot(1,1,1)
ax.set_xlabel('Time')
ax.set_ylabel('Value')
t = []
y = []
ax.plot( t , y , 'ko-' , markersize = 10 ) # add an empty line to the plot
fig.show() # show the window (figure will be in foreground, but the user may move it to background)
# plot things while new data is generated:
# (avoid calling plt.show() and plt.pause() to prevent window popping to foreground)
t0 = time.time()
while True:
t.append( time.time()-t0 ) # add new x data value
y.append( random() ) # add new y data value
ax.lines[0].set_data( t,y ) # set plot data
ax.relim() # recompute the data limits
ax.autoscale_view() # automatic axis scaling
fig.canvas.flush_events() # update the plot and take care of window events (like resizing etc.)
time.sleep(1) # wait for next loop iteration