Adding a new column in pandas dataframe from another dataframe with differing indices

前端 未结 1 938
清歌不尽
清歌不尽 2021-01-01 13:25

This is my original dataframe. This is my second dataframe containing one column. I want to add the column of second dataframe to the original dataframe at the end.Indices

相关标签:
1条回答
  • 2021-01-01 13:49

    Assuming the size of your dataframes are the same, you can assign the RESULT_df['RESULT'].values to your original dataframe. This way, you don't have to worry about indexing issues.

    # pre 0.24
    feature_file_df['RESULT'] = RESULT_df['RESULT'].values
    # >= 0.24
    feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
    

    Minimal Code Sample

    df
              A         B
    0 -1.202564  2.786483
    1  0.180380  0.259736
    2 -0.295206  1.175316
    3  1.683482  0.927719
    4 -0.199904  1.077655
    
    df2
    
               C
    11 -0.140670
    12  1.496007
    13  0.263425
    14 -0.557958
    15 -0.018375
    

    Let's try direct assignment first.

    df['C'] = df2['C']
    df
    
              A         B   C
    0 -1.202564  2.786483 NaN
    1  0.180380  0.259736 NaN
    2 -0.295206  1.175316 NaN
    3  1.683482  0.927719 NaN
    4 -0.199904  1.077655 NaN
    

    Now, assign the array returned by .values (or .to_numpy() for pandas versions >0.24). .values returns a numpy array which does not have an index.

    df2['C'].values 
    array([-0.141,  1.496,  0.263, -0.558, -0.018])
    
    df['C'] = df2['C'].values
    df
    
              A         B         C
    0 -1.202564  2.786483 -0.140670
    1  0.180380  0.259736  1.496007
    2 -0.295206  1.175316  0.263425
    3  1.683482  0.927719 -0.557958
    4 -0.199904  1.077655 -0.018375
    
    0 讨论(0)
提交回复
热议问题