Suppose I have two vectors of length 25, and I want to compute their covariance matrix. I try doing this with numpy.cov, but always end up with a 2x2 matrix.
You have two vectors, not 25. The computer I'm on doesn't have python so I can't test this, but try:
z = zip(x,y)
np.cov(z)
Of course.... really what you want is probably more like:
n=100 # number of points in each vector
num_vects=25
vals=[]
for _ in range(num_vects):
vals.append(np.random.normal(size=n))
np.cov(vals)
This takes the covariance (I think/hope) of num_vects
1xn
vectors
You should change
np.cov(x,y, rowvar=0)
onto
np.cov((x,y), rowvar=0)
To clarify the small confusion regarding what is a covariance matrix defined using two N-dimensional vectors, there are two possibilities.
The question you have to ask yourself is whether you consider:
[X1,X2,X3]
and [Y1,Y2,Y3]
, where you have 3 realizations for the variables X and Y respectively)[X1,Y1,Z1]
and [X2,Y2,Z2]
, where you have 1 realization for the variables X,Y and Z per vector)Since a covariance matrix is intuitively defined as a variance based on two different variables:
if you consider that you have 25 variables per vector (took 3 instead of 25 to simplify example code), so one realization for several variables in one vector, use rowvar=0
# [X1,Y1,Z1]
X_realization1 = [1,2,3]
# [X2,Y2,Z2]
X_realization2 = [2,1,8]
numpy.cov([X,Y],rowvar=0) # rowvar false, each column is a variable
Code returns, considering 3 variables:
array([[ 0.5, -0.5, 2.5],
[-0.5, 0.5, -2.5],
[ 2.5, -2.5, 12.5]])
otherwise, if you consider that one vector is 25 samples for one variable, use rowvar=1
(numpy's default parameter)
# [X1,X2,X3]
X = [1,2,3]
# [Y1,Y2,Y3]
Y = [2,1,8]
numpy.cov([X,Y],rowvar=1) # rowvar true (default), each row is a variable
Code returns, considering 2 variables:
array([[ 1. , 3. ],
[ 3. , 14.33333333]])
Reading the documentation as,
>> np.cov.__doc__
or looking at Numpy Covariance, Numpy treats each row of array as a separate variable, so you have two variables and hence you get a 2 x 2 covariance matrix.
I think the previous post has right solution. I have the explanation :-)
I suppose what youre looking for is actually a covariance function which is a timelag function. I'm doing autocovariance like that:
def autocovariance(Xi, N, k):
Xs=np.average(Xi)
aCov = 0.0
for i in np.arange(0, N-k):
aCov = (Xi[(i+k)]-Xs)*(Xi[i]-Xs)+aCov
return (1./(N))*aCov
autocov[i]=(autocovariance(My_wector, N, h))
i don't think you understand the definition of covariance matrix. If you need 25 x 25 covariance matrix, you need 25 vectors each with n data points.