I have a pandas dataframe:
+---------------+-------------+
| Test_Category | Test_Result |
+---------------+-------------+
| Cat_1 | Pass |
|
You could construct a new dataframe using unique values in the two columns as indices and columns, and use pandas' iterrows()
df_out = pd.DataFrame(index=df['Test_Category'].unique().tolist(), columns=df['Test_Result'].unique().tolist())
for index, row in df_out.iterrows():
for col in df_out.columns:
df_out.loc[index, col] = len(df[(df['Test_Category'] == index) & (df['Test_Result'] == col)])
Output:
Pass nan Fail
Cat1 1 1 0
Cat2 0 0 2
Cat3 2 1 1
Although using groupby()
should definitely be faster.
Here is problem NaN
values are exluded, so necessary use fillna with crosstab:
df1 = pd.crosstab(df['Test_Category'], df['Test_Result'].fillna('n/a'))
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 0 1 1
Cat_2 2 0 0
Cat_3 1 2 1
Or use GroupBy.size with unstack for reshape:
df['Test_Result'] = df['Test_Result'].fillna('n/a')
df1 = df.groupby(['Test_Category','Test_Result']).size().unstack()
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 NaN 1.0 1.0
Cat_2 2.0 NaN NaN
Cat_3 1.0 2.0 1.0
df1 = df.groupby(['Test_Category','Test_Result']).size().unstack(fill_value=0)
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 0 1 1
Cat_2 2 0 0
Cat_3 1 2 1
Another solution with pivot_table:
df = df.pivot_table(index='Test_Category',columns='Test_Result', aggfunc='size')