I need to implement a type-erasing wrapper for my own structure, very similar to SequenceOf
, GeneratorOf
, etc. So I started by trying to just re-im
Here is a sample implementation of MySequenceOf
which seems to work:
struct MySequenceOf<T> : SequenceType {
let myGenerator : GeneratorOf<T>
init<G : GeneratorType where G.Element == T>(_ makeUnderlyingGenerator: () -> G) {
self.myGenerator = GeneratorOf( makeUnderlyingGenerator() )
}
init<S : SequenceType where S.Generator.Element == T>(_ base: S) {
self.myGenerator = GeneratorOf( base.generate() )
}
func generate() -> GeneratorOf<T> {
return myGenerator
}
}
Example usage:
let seq = MySequenceOf {
_ -> GeneratorOf<Int> in
var i = 0
return GeneratorOf {
i < 5 ? ++i : nil
}
}
for i in seq { println(i) }
You can also replace GeneratorOf
from the Swift library by the following
MyGeneratorOf
:
struct MyGeneratorOf<T> : GeneratorType, SequenceType {
var nextFunc : () -> T?
init<G : GeneratorType where G.Element == T>(_ base: G) {
self.nextFunc = {
() -> T? in
var generator = base
return generator.next()
}
}
init(_ nextElement: () -> T?) {
self.nextFunc = nextElement
}
mutating func next() -> T? {
return nextFunc()
}
// Returns a copy of itself.
func generate() -> MyGeneratorOf<T> {
return MyGeneratorOf(nextFunc)
}
}
So (as far as I understand it, and I am far from understanding all the generic sequence
and generator stuff) the "trick" is that the next()
method of the
generator is a closure which captures the given generator and therefore can
forward the next()
call. A cast is not necessary.
Try:
struct MySequenceOf<T> : SequenceType {
private let _generate:() -> MyGeneratorOf<T>
init<G : GeneratorType where G.Element == T>(_ makeUnderlyingGenerator: () -> G) {
_generate = { MyGeneratorOf(makeUnderlyingGenerator()) }
}
init<S : SequenceType where S.Generator.Element == T>(_ base: S) {
_generate = { MyGeneratorOf(base.generate()) }
}
func generate() -> MyGeneratorOf<T> {
return _generate()
}
}
struct MyGeneratorOf<T> : GeneratorType, SequenceType {
private let _next:() -> T?
init(_ nextElement: () -> T?) {
_next = nextElement
}
init<G : GeneratorType where G.Element == T>(var _ base: G) {
_next = { base.next() }
}
mutating func next() -> T? {
return _next()
}
func generate() -> MyGeneratorOf<T> {
return self
}
}
The basic strategy of implementing ProtocolOf<T>
is, like this:
protocol ProtocolType {
typealias Value
func methodA() -> Value
func methodB(arg:Value) -> Bool
}
struct ProtocolOf<T>:ProtocolType {
private let _methodA: () -> T
private let _methodB: (T) -> Bool
init<B:ProtocolType where B.Value == T>(_ base:B) {
_methodA = { base.methodA() }
_methodB = { base.methodB($0) }
}
func methodA() -> T { return _methodA() }
func methodB(arg:T) -> Bool { return _methodB(arg) }
}
Added to answering @MartinR in comment.
Is there a special reason that _generate is a closure and not the generator itself?
First of all, I think, It's a matter of specification or semantics.
Needless to say, the difference is "when to create the generator".
Consider this code:
class Foo:SequenceType {
var vals:[Int] = [1,2,3]
func generate() -> Array<Int>.Generator {
return vals.generate()
}
}
let foo = Foo()
let seq = MySequenceOf(foo)
foo.vals = [4,5,6]
let result = Array(seq)
The problem is: result
should be [1,2,3]
or [4,5,6]
? My MySequenceOf
and built-in SequenceOf
results the latter. I just matched the behaviors with built-in one.