My data are pre-processed image data and I want to seperate two classes. In therory (and hopefully in practice) the best threshold is the local minimum between the two peaks
There are a few ways to do this.
First, using d
for the density as in your question, d$x
and d$y
contain the x and y values for the density plot. The minimum occurs when the derivative dy/dx = 0. Since the x-values are equally spaced, we can estimate dy using diff(d$y)
, and seek d$x
where abs(diff(d$y))
is minimized:
d$x[which.min(abs(diff(d$y)))]
# [1] 2.415785
The problem is that the density curve could also be maximized when dy/dx = 0. In this case the minimum is shallow but the maxima are peaked, so it works, but you can't count on that.
So a second way uses optimize(...)
which seeks a local minimum in a given interval. optimize(...)
needs a function as argument, so we use approxfun(d$x,d$y)
to create an interpolation function.
optimize(approxfun(d$x,d$y),interval=c(1,4))$minimum
# [1] 2.415791
Finally, we show that this is indeed the minimum:
hist(data,prob=TRUE)
lines(d, col="red", lty=2)
v <- optimize(approxfun(d$x,d$y),interval=c(1,4))$minimum
abline(v=v, col="blue")
Another approach, which is preferred actually, uses k-means clustering.
df <- read.csv(header=F,"data.txt")
colnames(df) = "X"
# bimodal
km <- kmeans(df,centers=2)
df$clust <- as.factor(km$cluster)
library(ggplot2)
ggplot(df, aes(x=X)) +
geom_histogram(aes(fill=clust,y=..count../sum(..count..)),
binwidth=0.5, color="grey50")+
stat_density(geom="line", color="red")
The data actually looks more trimodal than bimodal.
# trimodal
km <- kmeans(df,centers=3)
df$clust <- as.factor(km$cluster)
library(ggplot2)
ggplot(df, aes(x=X)) +
geom_histogram(aes(fill=clust,y=..count../sum(..count..)),
binwidth=0.5, color="grey50")+
stat_density(geom="line", color="red")