I have a matrix of data 29523 rows x 503 cols of which 3 cols are indices (below is a subset for example).
IDX1| IDX2 | IDX3 | 1983 Q4 | X | Y | Z |1
Given
In [189]: df
Out[189]:
IDX1 IDX2 IDX3 1983 Q4 X Y Z 1984 Q1 X.1 Y.1 Z.1
0 A A1 Q 10 A F NaN 110 A F NaN
1 A A2 Q 20 B C 40 120 B C 240
2 A A3 Q 30 A F NaN 130 A F NaN
3 A A4 Q 40 B C 80 140 B C 280
4 A A5 Q 50 A F NaN 150 A F NaN
5 A A6 Q 60 B F 120 160 B F 320
Let us first set ['IDX1', 'IDX2', 'IDX3']
as the index.
df = df.set_index(['IDX1', 'IDX2', 'IDX3'])
The other columns have a periodic quality to them; we want to handle every 4 columns as a group. This idea of "handling as a group" leads naturally to assigning a new index level to the column index; some value which is the same for every 4 columns. This would be ideal:
1983 Q4 1984 Q1
W X Y Z W X Y Z
IDX1 IDX2 IDX3
A A1 Q 10 A F NaN 110 A F NaN
A2 Q 20 B C 240 120 B C 240
A3 Q 30 A F NaN 130 A F NaN
A4 Q 40 B C 280 140 B C 280
A5 Q 50 A F NaN 150 A F NaN
A6 Q 60 B F 320 160 B F 320
We can achieve this by building a MultiIndex and assigning it to df.columns
:
columns = [col for col in df.columns if col[0] not in set(list('XYZ'))]
df.columns = pd.MultiIndex.from_product([columns, list('WXYZ')])
Now the desired long-format DataFrame can be obtained by calling df.stack
to
move the column levels into the row index:
df.columns.names = ['IDX4', 'ValueType']
series = df.stack(['IDX4', 'ValueType'], dropna=False)
Note also that when mangle_dupe_cols=False
, the duplicate columns, X
, Y
,
Z
, get overwritten. So you lose data with mangle_dupe_cols=False
. For
example, when you use mangle_dupe_cols=False
the last row's Z
value gets
assigns to every Z
column regardless of the period.
So we must use mangle_dupe_cols=True
, (or just leave it out since that is the
default) and adjust the code accordingly. That, fortunately, is not hard to do
since we are reassigning df.columns
to a custom-build MultiIndex anyway.
Putting it all together:
import numpy as np
import pandas as pd
df = pd.read_table('data', sep=r'\s*[|]\s*')
df = df.set_index(['IDX1', 'IDX2', 'IDX3'])
columns = [col for col in df.columns if col[0] not in set(list('XYZ'))]
df.columns = pd.MultiIndex.from_product([columns, list('WXYZ')])
df.columns.names = ['IDX4', 'ValueType']
series = df.stack(['IDX4', 'ValueType'], dropna=False)
print(series.head())
yields
IDX1 IDX2 IDX3 IDX4 ValueType
A A1 Q 1983 Q4 W 10
X A
Y F
Z NaN
1984 Q1 W 110
dtype: object
Note that since we've removed all the column levels, the result is a Series. If you want a DataFrame with 6 columns, then we should follow it up with:
series.name = 'Value'
df = series.reset_index()
print(df.head())
which yields
IDX1 IDX2 IDX3 IDX4 ValueType Value
0 A A1 Q 1983 Q4 W 10
1 A A1 Q 1983 Q4 X A
2 A A1 Q 1983 Q4 Y F
3 A A1 Q 1983 Q4 Z NaN
4 A A1 Q 1984 Q1 W 110
...