how to get the neighboring elements in a numpy array with taking boundaries into account?

前端 未结 4 829
不知归路
不知归路 2021-01-01 02:40

I want to get the neighbors of the certain element in the numpy array. Lets consider following example

    a = numpy.array([0,1,2,3,4,5,6,7,8,9])


        
相关标签:
4条回答
  • 2021-01-01 03:09
    import numpy as np
    a = np.array([0,1,2,3,4,5,6,7,8,9])
    num_neighbor=3    
    
    for index in range(len(a)):
        left = a[:index][-num_neighbor:]
        right= a[index+1:num_neighbor+index+1]
        print(index,left,right)
    

    yields

    (0, array([], dtype=int32), array([1, 2, 3]))
    (1, array([0]), array([2, 3, 4]))
    (2, array([0, 1]), array([3, 4, 5]))
    (3, array([0, 1, 2]), array([4, 5, 6]))
    (4, array([1, 2, 3]), array([5, 6, 7]))
    (5, array([2, 3, 4]), array([6, 7, 8]))
    (6, array([3, 4, 5]), array([7, 8, 9]))
    (7, array([4, 5, 6]), array([8, 9]))
    (8, array([5, 6, 7]), array([9]))
    (9, array([6, 7, 8]), array([], dtype=int32))
    

    The reason why a[index-num_neighbor:index] does not work when index<num_neighbor is because of slicing rules #3 and #4:

    Given s[i:j]:

    If i or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is substituted.

    The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s). If i is greater than or equal to j, the slice is empty.

    So when index=1, then a[index-num_neighbor:index] = a[-2:1] = a[10-2:1] = a[8:1] = [].

    0 讨论(0)
  • 2021-01-01 03:09
    left = a[max(0,index-num_neighbor):index]
    
    0 讨论(0)
  • 2021-01-01 03:11

    The method I came up with involves slicing the array and then padding as necessary to fill out-of-bounds values.

    Taken from here:

    def surrounding(x, idx, radius=1, fill=0):
    """ 
    Gets surrounding elements from a numpy array 
    
    Parameters: 
    x (ndarray of rank N): Input array
    idx (N-Dimensional Index): The index at which to get surrounding elements. If None is specified for a particular axis,
        the entire axis is returned.
    radius (array-like of rank N or scalar): The radius across each axis. If None is specified for a particular axis, 
        the entire axis is returned.
    fill (scalar or None): The value to fill the array for indices that are out-of-bounds.
        If value is None, only the surrounding indices that are within the original array are returned.
    
    Returns: 
    ndarray: The surrounding elements at the specified index
    """
    
    assert len(idx) == len(x.shape)
    
    if np.isscalar(radius): radius = tuple([radius for i in range(len(x.shape))])
    
    slices = []
    paddings = []
    for axis in range(len(x.shape)):
        if idx[axis] is None or radius[axis] is None:
            slices.append(slice(0, x.shape[axis]))
            paddings.append((0, 0))
            continue
    
        r = radius[axis]
        l = idx[axis] - r 
        r = idx[axis] + r
    
        pl = 0 if l > 0 else abs(l)
        pr = 0 if r < x.shape[axis] else r - x.shape[axis] + 1
    
        slices.append(slice(max(0, l), min(x.shape[axis], r+1)))
        paddings.append((pl, pr))
    
    if fill is None: return x[slices]
    return np.pad(x[slices], paddings, 'constant', constant_values=fill)
    
    0 讨论(0)
  • 2021-01-01 03:17

    Python takes care of boundaries for you:

    >>> a = [0,1,2,3,4,5,6,7,8,9]
    >>> a[-100 : 1000]
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> a[-100:3]
    [0, 1, 2]
    
    0 讨论(0)
提交回复
热议问题