In Python 3 I made program to extract posts and likes in Twitter:
import tweepy
import pandas as pd
consumer_key = \'\'
consumer_secret = \'\'
access_token
Here's an easy way:
import os
import tweepy
import pandas as pd
# use os.environ.get to obtain other environment variables
# from ~/.bashrc or ~/.zshrc etc., so they aren't in your code
consumer_key = os.environ.get('c_key')
consumer_secret = # os...
access_token = # os...
access_token_secret = # os...
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
results = api.search(q='cheese', count=100)
json_data = [r._json for r in results]
df = pd.io.json.json_normalize(json_data)
Importing the required libraries that we are going to use:
import pandas as pd
import numpy as np
import tweepy
import json
Providing our keys to connect to Twitter API:
consumer_key = '....'
consumer_secret = '....'
access_token = '....'
access_secret = '....'
The next step is creating an OAuthHandler instance...
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
...and then gain access to the Twitter API.
auth.set_access_token(access_token, access_secret)
Finally we create an API object that we are going to use it to fetch the tweets:
api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)
Fetching the last 20 tweets from FC Barcelona twitter account:
last_20_tweets_of_FC_Barcelona = api.user_timeline('FCBarcelona'
)
Then in this code block we isolate the json part of each tweepy status object that we have downloaded and we add them all into a list....
my_list_of_dicts = []
for each_json_tweet in last_20_tweets_of_FC_Barcelona:
my_list_of_dicts.append(each_json_tweet._json)
...and then we write this list into a txt file:
with open('tweet_json_Barca.txt', 'w') as file:
file.write(json.dumps(my_list_of_dicts, indent=4))
Now we are going to create a DataFrame from the tweet_json.txt file:
my_demo_list = []
with open('tweet_json_Barca.txt', encoding='utf-8') as json_file:
all_data = json.load(json_file)
for each_dictionary in all_data:
tweet_id = each_dictionary['id']
text = each_dictionary['text']
favorite_count = each_dictionary['favorite_count']
retweet_count = each_dictionary['retweet_count']
created_at = each_dictionary['created_at']
my_demo_list.append({'tweet_id': str(tweet_id),
'text': str(text),
'favorite_count': int(favorite_count),
'retweet_count': int(retweet_count),
'created_at': created_at,
})
#print(my_demo_list)
tweet_json = pd.DataFrame(my_demo_list, columns =
['tweet_id', 'text',
'favorite_count', 'retweet_count',
'created_at'])