I need to define a function \'Compose\' which takes a list \'L\' which is a list of functions. When I specify a parameter that will suit all the functions in the list, the l
If the solution is a one-line answer, it could be something involving a fold:
compose :: [a -> a] -> a -> a
compose fs v = foldl (flip (.)) id fs $ v
http://haskell.org/haskellwiki/Compose
You can also implement it as a right fold, which works the way you want:
compose = foldr (.) id
*Main> let compose = foldr (.) id
*Main> compose [\x -> x+1, \x -> 2 * x, id] 3
7
The same using monoids, point-free
import Data.Monoid
compose :: [a -> a] -> a -> a
compose = appEndo . mconcat . map Endo
Or somewhat more generally:
import Data.Monoid
compose :: (Functor t, Foldable t) => t (a -> a) -> a -> a
compose = appEndo . foldl1 (<>) . fmap Endo
Dan kind of gives it away, but here's a hint on how to do it yourself. You can recurse over numbers:
0! = 1
n! = (n-1)! * n
You can also recurse over structure. A list, for example, has a recursive structure, broken down into two cases: an empty list, and an item followed by the rest of the list. In no particular language:
List := Item x List
| Nil
Item
marks the head of the list, x
is the value stored in the head, and List
is the tail. In this grammar, your list would be written:
Item ( fn N -> N + 1 ) Item ( fn N -> 2 * N ) Nil
The rule for a list in the syntax your professor invented could be written recursively as:
List := x ^ List
| #
A function on a list must recurse over this structure, which means it handles each of the two cases:
sum l:List = Nil -> 0
| Item x xs:List = x + sum xs
The recursion, specifically, is the term sum l:List = x + sum xs
. Writing this function using the professor's syntax left as an exercise.
In your problem, your metafunction takes a list of functions and must return a function. Consider each case, the empty list and an item (the head) followed by a list (the tail). In the latter case, you can recursively use your function to get a function from the tail, then combine that somehow with the head to return a function. That's the gist, at any rate.
Here's what I used:
compose :: [a -> a] -> a -> a
compose list startingvalue = foldl (\x f -> f x) startingvalue list
in haskell:
compose :: a -> [a -> a] -> a
compose a (x:xs) = x (compose a xs)
compose a [] = a