I noticed that for scheduled task the execution date is set in the past according to
Airflow was developed as a solution for ETL needs. In the ETL wo
There is a function available in the experimental API section of airflow that allows you to trigger a dag with a specific execution date.
https://github.com/apache/incubator-airflow/blob/master/airflow/api/common/experimental/trigger_dag.py
You can call this function as a part of PythonOperator and achieve the objective.
So it will look like
from airflow.api.common.experimental.trigger_dag import trigger_dag
trigger_operator=PythonOperator(task_id='YOUR_TASK_ID',
python_callable=trigger_dag,
op_args=['dag_id'],
op_kwargs={'execution_date': datetime.now()})
The following class expands on TriggerDagRunOperator
to allow passing the execution date as a string that then gets converted back into a datetime. It's a bit hacky but it is the only way I found to get the job done.
from datetime import datetime
import logging
from airflow import settings
from airflow.utils.state import State
from airflow.models import DagBag
from airflow.operators.dagrun_operator import TriggerDagRunOperator, DagRunOrder
class MMTTriggerDagRunOperator(TriggerDagRunOperator):
"""
MMT-patched for passing explicit execution date
(otherwise it's hard to hook the datetime.now() date).
Use when you want to explicity set the execution date on the target DAG
from the controller DAG.
Adapted from Paul Elliot's solution on airflow-dev mailing list archives:
http://mail-archives.apache.org/mod_mbox/airflow-dev/201711.mbox/%3cCAJuWvXgLfipPmMhkbf63puPGfi_ezj8vHYWoSHpBXysXhF_oZQ@mail.gmail.com%3e
Parameters
------------------
execution_date: str
the custom execution date (jinja'd)
Usage Example:
-------------------
my_dag_trigger_operator = MMTTriggerDagRunOperator(
execution_date="{{execution_date}}"
task_id='my_dag_trigger_operator',
trigger_dag_id='my_target_dag_id',
python_callable=lambda: random.getrandbits(1),
params={},
dag=my_controller_dag
)
"""
template_fields = ('execution_date',)
def __init__(
self, trigger_dag_id, python_callable, execution_date,
*args, **kwargs
):
self.execution_date = execution_date
super(MMTTriggerDagRunOperator, self).__init__(
trigger_dag_id=trigger_dag_id, python_callable=python_callable,
*args, **kwargs
)
def execute(self, context):
run_id_dt = datetime.strptime(self.execution_date, '%Y-%m-%d %H:%M:%S')
dro = DagRunOrder(run_id='trig__' + run_id_dt.isoformat())
dro = self.python_callable(context, dro)
if dro:
session = settings.Session()
dbag = DagBag(settings.DAGS_FOLDER)
trigger_dag = dbag.get_dag(self.trigger_dag_id)
dr = trigger_dag.create_dagrun(
run_id=dro.run_id,
state=State.RUNNING,
execution_date=self.execution_date,
conf=dro.payload,
external_trigger=True)
logging.info("Creating DagRun {}".format(dr))
session.add(dr)
session.commit()
session.close()
else:
logging.info("Criteria not met, moving on")
There is an issue you may run into when using this and not setting execution_date=now()
: your operator will throw a mysql error if you try to start a dag with an identical execution_date
twice. This is because the execution_date
and dag_id
are used to create the row index and rows with identical indexes cannot be inserted.
I can't think of a reason you would ever want to run two identical dags with the same execution_date
in production anyway, but it is something I ran into while testing and you should not be alarmed by it. Simply clear the old job or use a different datetime.
I improved a bit the MMTTriggerDagRunOperator. The function checks if the dag_run already exists, if found, restart the dag using the clear function of airflow. This allows us to create a dependency between dags because the possibility to have the execution date moved to the triggered dag opens a whole universe of amazing possibilities. I wonder why this is not the default behavior in airflow.
def execute(self, context):
run_id_dt = datetime.strptime(self.execution_date, '%Y-%m-%d %H:%M:%S')
dro = DagRunOrder(run_id='trig__' + run_id_dt.isoformat())
dro = self.python_callable(context, dro)
if dro:
session = settings.Session()
dbag = DagBag(settings.DAGS_FOLDER)
trigger_dag = dbag.get_dag(self.trigger_dag_id)
if not trigger_dag.get_dagrun( self.execution_date ):
dr = trigger_dag.create_dagrun(
run_id=dro.run_id,
state=State.RUNNING,
execution_date=self.execution_date,
conf=dro.payload,
external_trigger=True
)
logging.info("Creating DagRun {}".format(dr))
session.add(dr)
session.commit()
else:
trigger_dag.clear(
start_date = self.execution_date,
end_date = self.execution_date,
only_failed = False,
only_running = False,
confirm_prompt = False,
reset_dag_runs = True,
include_subdags= False,
dry_run = False
)
logging.info("Cleared DagRun {}".format(trigger_dag))
session.close()
else:
logging.info("Criteria not met, moving on")
The TriggerDagRunOperator
now has an execution_date
parameter to set the execution date of the triggered run.
Unfortunately the parameter is not in the template fields.
If it will be added to template fields (or if you override the operator and change the template_fields value) it will be possible to use it like this:
my_trigger_task= TriggerDagRunOperator(task_id='my_trigger_task',
trigger_dag_id="triggered_dag_id",
python_callable=conditionally_trigger,
execution_date= '{{execution_date}}',
dag=dag)
It has not been released yet but you can see the sources here: https://github.com/apache/incubator-airflow/blob/master/airflow/operators/dagrun_operator.py
The commit that did the change was: https://github.com/apache/incubator-airflow/commit/089c996fbd9ecb0014dbefedff232e8699ce6283#diff-41f9029188bd5e500dec9804fed26fb4