How to decode encoded polylines from OSRM and plotting route geometry?

前端 未结 1 1597
隐瞒了意图╮
隐瞒了意图╮ 2020-12-31 16:56

I\'m using an instance of OSRM (OpenStreetMap Routing Machine) to evaluate distance and time from different points. Using the API, I can retrieve information that I want and

相关标签:
1条回答
  • 2020-12-31 17:19

    One (quick) way to get this going is to download the polyline.js file from the mapbox github repo then use the V8 package to do the hard work for you:

    library(V8)
    
    ctx <- new_context()
    ctx$source("polyline.js")
    ctx$call("polyline.decode", "_p~iF~ps|U_ulLnnqC_mqNvxq`@")
    
    ##        [,1]     [,2]
    ## [1,] 38.500 -120.200
    ## [2,] 40.700 -120.950
    ## [3,] 43.252 -126.453
    

    It returns a matrix of lat/lon pairs you should be able to work with.

    A pure R/Rcpp answer would be better in the long run, though.

    UPDATE

    There is one! This came from: https://gist.github.com/diegovalle/916889 (I added the requires and combined some wordy 0 assignments):

    DecodeLineR <- function(encoded) {
      require(bitops)
      require(stringr)
      len = str_length(encoded)
      encoded <- strsplit(encoded, NULL)[[1]]
      index = 1
      N <- 100000
      df.index <- 1
      array = matrix(nrow = N, ncol = 2)
      lat <- dlat <- lng <- dlnt <- b <- shift <- result <- 0
    
      while(index <= len) {
    
        shift <- result <- 0
    
        repeat {
          b = as.integer(charToRaw(encoded[index])) - 63
          index <- index + 1
          result = bitOr(result, bitShiftL(bitAnd(b, 0x1f), shift))
          shift = shift + 5
          if(b < 0x20) break
        }
        dlat = ifelse(bitAnd(result, 1),
                     -(result - (bitShiftR(result, 1))),
                     bitShiftR(result, 1))
        lat = lat + dlat;
    
        shift <- result <- b <- 0
    
        repeat {
          b = as.integer(charToRaw(encoded[index])) - 63
          index <- index + 1
          result = bitOr(result, bitShiftL(bitAnd(b, 0x1f), shift))
          shift = shift + 5
          if(b < 0x20) break
        }
        dlng = ifelse(bitAnd(result, 1),
                      -(result - (bitShiftR(result, 1))),
                      bitShiftR(result, 1))
        lng = lng + dlng
    
        array[df.index,] <- c(lat = lat * 1e-05, lng = lng * 1e-5)
        df.index <- df.index + 1
      }
    
      ret <- data.frame(array[1:df.index - 1,])
      names(ret) <- c("lat", "lng")
      return(ret)
    }
    
    DecodeLineR("_p~iF~ps|U_ulLnnqC_mqNvxq`@")
    
    ##      lat      lng
    ## 1 38.500 -120.200
    ## 2 40.700 -120.950
    ## 3 43.252 -126.453
    

    That gets you a data frame vs a matrix. And is pure R. Not sure which one will be faster (if speed is a need).

    UPDATE #2

    There's another pure R implementation here: http://s4rdd.blogspot.com/2012/12/google-maps-api-decoding-polylines-for.html and it's much faster than the one above (see below for benchmarks).

    decodeLine <- function(encoded){
      require(bitops)
    
      vlen <- nchar(encoded)
      vindex <- 0
      varray <- NULL
      vlat <- 0
      vlng <- 0
    
      while(vindex < vlen){
        vb <- NULL
        vshift <- 0
        vresult <- 0
        repeat{
          if(vindex + 1 <= vlen){
            vindex <- vindex + 1
            vb <- as.integer(charToRaw(substr(encoded, vindex, vindex))) - 63  
          }
    
          vresult <- bitOr(vresult, bitShiftL(bitAnd(vb, 31), vshift))
          vshift <- vshift + 5
          if(vb < 32) break
        }
    
        dlat <- ifelse(
          bitAnd(vresult, 1)
          , -(bitShiftR(vresult, 1)+1)
          , bitShiftR(vresult, 1)
        )
        vlat <- vlat + dlat
    
        vshift <- 0
        vresult <- 0
        repeat{
          if(vindex + 1 <= vlen) {
            vindex <- vindex+1
            vb <- as.integer(charToRaw(substr(encoded, vindex, vindex))) - 63        
          }
    
          vresult <- bitOr(vresult, bitShiftL(bitAnd(vb, 31), vshift))
          vshift <- vshift + 5
          if(vb < 32) break
        }
    
        dlng <- ifelse(
          bitAnd(vresult, 1)
          , -(bitShiftR(vresult, 1)+1)
          , bitShiftR(vresult, 1)
        )
        vlng <- vlng + dlng
    
        varray <- rbind(varray, c(vlat * 1e-5, vlng * 1e-5))
      }
      coords <- data.frame(varray)
      names(coords) <- c("lat", "lon")
      coords
    }
    

    Here's an Rcpp/C++11 version courtesy of https://mapzen.com/documentation/mobility/decoding/ :

    #include <Rcpp.h>
    #include <vector>
    
    using namespace Rcpp;
    
    // [[Rcpp::plugins(cpp11)]]
    
    // [[Rcpp::export]]
    DataFrame decode_polyline(const std::string& encoded) {
      size_t i = 0;     // what byte are we looking at
    
      constexpr double kPolylinePrecision = 1E6;
      constexpr double kInvPolylinePrecision = 1.0 / kPolylinePrecision;
    
      auto deserialize = [&encoded, &i](const int previous) {
        int byte, shift = 0, result = 0;
        do {
          byte = static_cast<int>(encoded[i++]) - 63;
          result |= (byte & 0x1f) << shift;
          shift += 5;
        } while (byte >= 0x20);
        return previous + (result & 1 ? ~(result >> 1) : (result >> 1));
      };
    
      std::vector<double> lonv, latv;
      int last_lon = 0, last_lat = 0;
      while (i < encoded.length()) {
        int lat = deserialize(last_lat);
        int lon = deserialize(last_lon);
    
        latv.emplace_back(static_cast<float>(static_cast<double>(lat) * kInvPolylinePrecision));
        lonv.emplace_back(static_cast<float>(static_cast<double>(lon) * kInvPolylinePrecision));
    
        last_lon = lon;
        last_lat = lat;
      }
    
      return DataFrame::create(_["lon"] = lonv, _["lat"] = latv);
    }
    

    Save that to polyline.cpp and just:

    Rcpp::sourceCpp("polyline.cpp")
    

    Then you can:

    decode_polyline("_p~iF~ps|U_ulLnnqC_mqNvxq`@")
    ##        lon    lat
    ## 1 -120.200 38.500
    ## 2 -120.950 40.700
    #3 3 -126.453 43.252
    

    Benchmarks

    I sourced the two R function into the global environment and did the js & C++ equivalents for the javascript and C++ implementations.

    The max value is pretty "out there" for DecodeLineR no matter what microbenchmark parameters I use. The decodeLine() pure R version seems performant enough to not warrant incurring the V8 or Rcpp/C++11 dependency, but YMMV.

    FINAL UPDATE (MOAR BENCHMARKS)

    I incorporated the googleway::decode_pl() function into the new benchmarks and used a much longer polyline. Benchmark code is below and the new plot is below that.

    library(microbenchmark)
    library(Rcpp)
    library(inline)
    library(V8)
    library(googleway)
    library(ggplot2)
    
    sourceCpp("polyline.cpp")
    
    ctx <- v8()
    ctx$source("polyline.js")
    
    source("DecodeLineR.R")
    source("decodeline.R")
    
    line_str <- "{ae{HntiQtCcDzG_I|^uc@rFgHhC{CxAiA~AaA~BkAvB}A|F_G|AgBbBkCtAwCd@sA|BoIVw@Pc@|@gBt@}@|@y@lCwBvA_B`@k@~@aBt@iBlAaE~@oEp@sDX{BP_BJaDAcEIeCe@gHo@yMUaEk@uDm@iD]mCAwBNsDXyDL}@nByIZyCt@cLr@gNB_ABoEAkFJmDTkBVeAZ_Af@gAnDwF|@gBbAoChHgUPWlAT`@B|@GbE_@dAW`Cu@vBe@tDs@xD{@`Bg@bBq@hBaAtB}@dCi@bF}@jBg@pBeAj@SNE\\C^@\\DbAZ`Ah@~C`A\\H|ALzAFLA^Gl@UdBgAjBaBZSh@Qz@MjD_@`FoAtCa@j@Ez@DxE|@xF\\nBP~@TxHvBf@Tb@\\pBvC\\^`@XxAf@fBT|BDfAIr@MfBe@rBa@rBMvBYxBg@xA_@^Ir@@NF|@l@nBfAjAj@dBV`Bb@lBbAbB~ALPhC`FV`@n@z@^VNBX?LGZa@d@eAp@qAt@Sx@Cz@G\\IZOhCcBb@c@T]jA_CrE_HfEiFz@}@p@k@|@o@`C{A`A{@rBwBx@oAbByCp@wArAoDLWxA}BhAcBjAqAlAiB~AaDr@sBp@{CD[TkC^}FZyD^oCx@gF`@qAh@kAz@yAtAgBpD_E|JoKdDuEjBcCfC{ExCqGdAgBlBuBrAyBpEkIpEsI\\]^YbAg@|GaBzKeEfBe@lCW`AQr@U|A_AtAkAhDyCpAeA|Aq@`EeCrDgBvA{@tD}C`BmAzBm@t@QvAQxBOl@Q~Ai@~BsAlCcB"
    
    microbenchmark(
      googleway = decode_pl(line_str),
      rcpp = decode(line_str),
      js = ctx$call("polyline_decode", line_str),
      DecodeLineR = DecodeLineR(line_str),
      decodeLine = decodeLine(line_str),
      control=list(warmup=50),
      times=1000
    ) -> mb
    
    mb
    ## Unit: microseconds
    ##         expr      min         lq       mean    median        uq        max neval cld
    ##    googleway  404.322   471.8475   817.8312   526.270   579.095 135564.973  1000 a  
    ##         rcpp  253.062   302.9550   363.9325   359.765   401.054    831.699  1000 a  
    ##           js 2793.677  3099.3390  3359.6190  3219.312  3427.636  15580.609  1000  b 
    ##  DecodeLineR 9366.714  9656.4140 12029.3991 10128.676 12570.216 181536.940  1000   c
    ##   decodeLine 9907.869 10218.0465 11413.5732 10655.949 11491.305 150588.501  1000   c
    
    update_geom_defaults("violin", list(fill="maroon"))
    
    autoplot(mb) +
      scale_y_log10(name="Time [microseconds]", label=scales::comma) +
      hrbrmisc::theme_hrbrmstr(grid="X")
    

    0 讨论(0)
提交回复
热议问题