dplyr group by, carry forward value from previous group to next

后端 未结 6 2070
小蘑菇
小蘑菇 2020-12-31 16:50

Ok this is the over all view of what i\'m trying to achieve with dplyr:

Using dplyr I am making calculations to form new columns.

initial.         


        
相关标签:
6条回答
  • 2020-12-31 16:57

    It took me a very long time to understand what you are going for: for a single "update", does this work?

    library(tidyverse)
    library(magrittr)
    temp <- df %>% 
      dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
      group_by(RunID) %>% # Don't delete the RunID 
      dplyr::mutate(max.new = max(new.initial.capital)) %>% 
      slice(1) %>%
      arrange(x.long) %>% 
      dplyr::mutate(pass.value = lag(max.new))
    
    df <- left_join(df, temp %>% dplyr::select(x.long, RunID, pass.value)
    

    After this, replace values of initial.capital using pass.value column, according to grouped row_number as you have done above.

    I'm not quite sure how to go about it without looping this updating procedure, and I guess if you want to do 10,000 updates like this it will certainly be a bummer. But it will be enable you to "pass" the value to the second red cell as in your picture.

    0 讨论(0)
  • 2020-12-31 16:58

    I decided to revisit this problem here is a solution by grouping per trade signal, making a start and end of trade group ID. After, use a normal for loop to do the calculations on ifelse statements and updating running variables between groups: shares, total_start_capital and total_end_capital. These allow carrying variables over from trade to the next trade and be used in each successive trade calculations. If only dplyr allowed updating of variables between groups. This has value if someone wants to create their own back test script with the use of PnL $ versus % rets.

    # Dollar PnL Back Test Script Example 
    # Andrew Bannerman 1.7.2017
    
    df<- read.table(text="37.96   NA  NA  
    36.52   0   0   
    38.32   0   0   
    38.55  0   0  
    38.17   0   0   
    38.85   1   1   
    38.53   1   1  
    39.13   1   1   
    38.13   1   1    
    37.01   0   0   
    36.14   0   0   
    35.27   0   0   
    35.13   0   0   
    32.2    0   0 
    33.03   1   1   
    34.94   1   1   
    34.57   1   1  
    33.6    1   1 
    34.34   1   1  
    35.86 0     0   ",stringsAsFactors=FALSE,header=TRUE)
    
    colnames(df)[1] <- "close"
    colnames(df)[2] <- "signal"
    colnames(df)[3] <- "signal_short"
    
    # Place group id at start/end of each group 
    df <- df %>%
      dplyr::mutate(ID = data.table::rleid(signal)) %>%
      group_by(ID) %>%
      dplyr::mutate(TradeID = ifelse(signal ==1,as.numeric(row_number()),0))%>% # Run id per group month
      dplyr::mutate(group_id_last = ifelse(signal == 0,0, 
                                             ifelse(row_number() == n(), 3,0))) %>%
      dplyr::mutate(group_id_first = ifelse(TradeID == 1 & signal == 1,2,0))
    
    ############################################## 
    # Custom loop 
    ################################################
    run_start_equity <- 10000  # Enter starting equity
    run_end_equity <- 0        # variable for updating end equity in loop
    run.shares <- 0
    df$start.balance <- 0
    df$net.proceeds <- 0
    df$end.balance <-0
    df$shares <- 0
    i=1
    for (i in 1:nrow(df)) { 
      df$start.balance[i] <- ifelse(df$group_id_first[i] == 2, run_start_equity, 0)
      df$shares[i] <- ifelse(df$group_id_first[i] == 2, run_start_equity / df$close[i],0)
      run.shares <- ifelse(df$group_id_first[i] == 2, df$shares[i], run.shares)
      df$end.balance[i] <- ifelse(df$group_id_last[i] == 3, run.shares * df$close[i],0)
      run_end_equity <- ifelse(df$group_id_last[i] == 3, df$end.balance[i],run_end_equity)
      df$net.proceeds[i] <- ifelse(df$group_id_last[i] == 3, run_end_equity - run_start_equity,0)
      run_start_equity <- ifelse(df$group_id_last[i] == 3, df$end.balance[i] ,run_start_equity)
       }
    

    With the desired output:

    > df
    # A tibble: 19 x 11
    # Groups:   ID [5]
       close signal signal_short    ID TradeID group_id_last group_id_first start.balance net.proceeds end.balance   shares
       <dbl>  <int>        <int> <int>   <dbl>         <dbl>          <dbl>         <dbl>        <dbl>       <dbl>    <dbl>
     1 36.52      0            0     1       0             0              0         0.000       0.0000       0.000   0.0000
     2 38.32      0            0     1       0             0              0         0.000       0.0000       0.000   0.0000
     3 38.55      0            0     1       0             0              0         0.000       0.0000       0.000   0.0000
     4 38.17      0            0     1       0             0              0         0.000       0.0000       0.000   0.0000
     5 38.85      1            1     2       1             0              2     10000.000       0.0000       0.000 257.4003
     6 38.53      1            1     2       2             0              0         0.000       0.0000       0.000   0.0000
     7 39.13      1            1     2       3             0              0         0.000       0.0000       0.000   0.0000
     8 38.13      1            1     2       4             3              0         0.000    -185.3282    9814.672   0.0000
     9 37.01      0            0     3       0             0              0         0.000       0.0000       0.000   0.0000
    10 36.14      0            0     3       0             0              0         0.000       0.0000       0.000   0.0000
    11 35.27      0            0     3       0             0              0         0.000       0.0000       0.000   0.0000
    12 35.13      0            0     3       0             0              0         0.000       0.0000       0.000   0.0000
    13 32.20      0            0     3       0             0              0         0.000       0.0000       0.000   0.0000
    14 33.03      1            1     4       1             0              2      9814.672       0.0000       0.000 297.1442
    15 34.94      1            1     4       2             0              0         0.000       0.0000       0.000   0.0000
    16 34.57      1            1     4       3             0              0         0.000       0.0000       0.000   0.0000
    17 33.60      1            1     4       4             0              0         0.000       0.0000       0.000   0.0000
    18 34.34      1            1     4       5             3              0         0.000     389.2589   10203.931   0.0000
    19 35.86      0            0     5       0             0              0         0.000       0.0000       0.000   0.0000
    
    0 讨论(0)
  • 2020-12-31 16:59

    You're using data.table in the question and have tagged the question data.table, so here is a data.table answer. When j evaluates, it's in a static scope where local variables retain their values from the previous group.

    Using dummy data to demonstrate :

    require(data.table)
    set.seed(1)
    DT = data.table( long = rep(c(0,1,0,1),each=3),
                     val = sample(5,12,replace=TRUE))
    DT
        long val
     1:    0   2
     2:    0   2
     3:    0   3
     4:    1   5
     5:    1   2
     6:    1   5
     7:    0   5
     8:    0   4
     9:    0   4
    10:    1   1
    11:    1   2
    12:    1   1
    
    DT[, v1:=sum(val), by=rleid(long)][]
        long val v1
     1:    0   2  7
     2:    0   2  7
     3:    0   3  7
     4:    1   5 12
     5:    1   2 12
     6:    1   5 12
     7:    0   5 13
     8:    0   4 13
     9:    0   4 13
    10:    1   1  4
    11:    1   2  4
    12:    1   1  4
    

    So far, simple enough.

    prev = NA  # initialize previous group value
    DT[, v2:={ans<-last(val)/prev; prev<-sum(val); ans}, by=rleid(long)][]
        long val v1         v2
     1:    0   2  7         NA
     2:    0   2  7         NA
     3:    0   3  7         NA
     4:    1   5 12 0.71428571
     5:    1   2 12 0.71428571
     6:    1   5 12 0.71428571
     7:    0   5 13 0.33333333
     8:    0   4 13 0.33333333
     9:    0   4 13 0.33333333
    10:    1   1  4 0.07692308
    11:    1   2  4 0.07692308
    12:    1   1  4 0.07692308
    
    > 3/NA
    [1] NA
    > 5/7
    [1] 0.7142857
    > 4/12
    [1] 0.3333333
    > 1/13
    [1] 0.07692308
    > prev
    [1] NA
    

    Notice that the prev value did not update because prev and ans are local variables inside j's scope that were being updated as each group ran. Just to illustrate, the global prev can be updated from within each group using R's <<- operator :

    DT[, v2:={ans<-last(val)/prev; prev<<-sum(val); ans}, by=rleid(long)]
    prev
    [1] 4
    

    But there's no need to use <<- in data.table as local variables are static (retain their values from previous group). Unless you need to use the final group's value after the query has finished.

    0 讨论(0)
  • 2020-12-31 17:02

    You're going to have a hard time finding an 'elegant' pure-dplyr solution, because dplyr isn't really designed to do this. What dplyr likes to do is map/reduce type operations (mutate and summarize) that use window and summary functions respectively. What you're asking for isn't really either of those, because you want each group to depend on the last, so you're really describing a looping operation with side effects - two very non-R-philosophy operations.

    If you want to hack your way into doing what you describe, you can try an approach like this:

    new.initial.capital <- 0
    for (z in split(df, df$x.long)) {
        z$initial.capital[[1]] <- new.initial.capital
        # some other calculations here
        # maybe you want to modify df as well
        new.initial.capital <- foo
    }
    

    However, this is really not a very R-friendly piece of code, as it depends on side effects and loops. I would advise seeing if you can reframe your calculations in terms of a summary and/or window function if you want to integrate with dplyr.

    For more:
    https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
    https://danieljhocking.wordpress.com/2014/12/03/lags-and-moving-means-in-dplyr/

    0 讨论(0)
  • 2020-12-31 17:05

    Rolling forwards a value like that can be very difficult. I think it would be preferred to put in a line at the top that acts as a transaction whose net effect is to add 10k to your base capital. You can then use a cumulative sum on the offsets to achieve what you are looking for with relative ease:

    pdf = df %>% group_by(group) %>% arrange(dates) %>% mutate(cs = cumsum(sales))
    

    Code copied from r cumsum per group in dplyr

    0 讨论(0)
  • 2020-12-31 17:15

    This kind of use of first and last is very untidy, so we'll keep it for the latest step.

    First we build intermediate data, following your code, but adding some columns to join later at the right places. I'm not sure if you need to keep all columns, you won't need the second join if not.

    library(dplyr)
    library(tidyr)
    
    df1 <- df0 %>%
      dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
      group_by(RunID) %>%
      mutate(RunID_f = ifelse(row_number()==1,RunID,NA)) %>%  #  for later merge
      mutate(RunID_l = ifelse(row_number()==n(),RunID,NA))    #  possibly unneeded
    

    Then we build summarized data, I refactored your code a bit as you see, because these operations "should" be rowwise.

    summarized_data <- df1 %>%
      filter(x.long !=0) %>%
      summarize_at(vars(close.x,inital.capital),c("first","last")) %>%
      mutate(x.long.share        = inital.capital_first / close.x_first,
             x.end.value         = x.long.share         * close.x_last,
             x.net.profit        = inital.capital_last - x.end.value,
             new.initial.capital = x.net.profit         + inital.capital_last,
             lagged.new.initial.capital = lag(new.initial.capital,1))
    
    # A tibble: 2 x 10
    #   RunID close.x_first inital.capital_first close.x_last inital.capital_last x.long.share x.end.value x.net.profit new.initial.capital lagged.new.initial.capital
    #   <int>         <dbl>                <int>        <dbl>               <int>        <dbl>       <dbl>        <dbl>               <dbl>                      <dbl>
    # 1     3         38.85                10000        38.13               10000     257.4003    9814.672     185.3282           10185.328                         NA
    # 2     5         33.03                10000        34.34               10000     302.7551   10396.609    -396.6091            9603.391                   10185.33
    

    Then we join our summarized table to the original, getting advantage of the trick of the firt step. The first join may be skipped if you don't need all columns.

    df2 <- df1 %>% ungroup %>%
      left_join(summarized_data %>% select(-lagged.new.initial.capital) ,by=c("RunID_l"="RunID")) %>%      # if you want the other variables, if not, skip the line
      left_join(summarized_data %>% select(RunID,lagged.new.initial.capital) ,by=c("RunID_f"="RunID")) %>%
      mutate(inital.capital = ifelse(is.na(lagged.new.initial.capital),inital.capital,lagged.new.initial.capital)) %>%
      select(close.x:inital.capital) # for readability here
    
    # # A tibble: 20 x 6
    # close.x x.long y.short x.short y.long inital.capital
    # <dbl>  <int>   <int>   <int>  <int>          <dbl>
    #  1 37.9600     NA      NA      NA     NA       10000.00
    #  2 36.5200      0       0       0      0       10000.00
    #  3 38.3200      0       0       0      0       10000.00
    #  4 38.5504      0       0       0      0       10000.00
    #  5 38.1700      0       0       0      0       10000.00
    #  6 38.8500      1       1       0      0       10000.00
    #  7 38.5300      1       1       0      0       10000.00
    #  8 39.1300      1       1       0      0       10000.00
    #  9 38.1300      1       1       0      0       10000.00
    # 10 37.0100      0       0       1      1       10000.00
    # 11 36.1400      0       0       1      1       10000.00
    # 12 35.2700      0       0       1      1       10000.00
    # 13 35.1300      0       0       1      1       10000.00
    # 14 32.2000      0       0       1      1       10000.00
    # 15 33.0300      1       1       0      0       10185.33
    # 16 34.9400      1       1       0      0       10000.00
    # 17 34.5700      1       1       0      0       10000.00
    # 18 33.6000      1       1       0      0       10000.00
    # 19 34.3400      1       1       0      0       10000.00
    # 20 35.8600      0       0       1      1       10000.00
    

    data

    df<- read.table(text="close.x x.long  y.short x.short y.long  inital.capital  x.long.shares   x.end.value x.net.profit    new.initial.capital
    37.96   NA  NA  NA  NA  10000   NA  NA  NA  NA
    36.52   0   0   0   0   10000   0   0   0   0
    38.32   0   0   0   0   10000   0   0   0   0
    38.5504 0   0   0   0   10000   0   0   0   0
    38.17   0   0   0   0   10000   0   0   0   0
    38.85   1   1   0   0   10000   0   0   0   0
    38.53   1   1   0   0   10000   0   0   0   0
    39.13   1   1   0   0   10000   0   0   0   0
    38.13   1   1   0   0   10000   257.4002574 9814.671815 185.3281853 10185.32819
    37.01   0   0   1   1   10000   0   0   0   0
    36.14   0   0   1   1   10000   0   0   0   0
    35.27   0   0   1   1   10000   0   0   0   0
    35.13   0   0   1   1   10000   0   0   0   0
    32.2    0   0   1   1   10000   0   0   0   0
    33.03   1   1   0   0   10000   0   0   0   0
    34.94   1   1   0   0   10000   0   0   0   0
    34.57   1   1   0   0   10000   0   0   0   0
    33.6    1   1   0   0   10000   0   0   0   0
    34.34   1   1   0   0   10000   302.7550711 10396.60914 -396.6091432    9603.390857
    35.86   0   0   1   1   10000   0   0   0   0",stringsAsFactors=FALSE,header=TRUE)
    
    df0 <- df %>% select(close.x:inital.capital)
    
    0 讨论(0)
提交回复
热议问题