I am working with complex networks. I want to find group of nodes which forms a cycle of 3 nodes (or triangles) in a given graph. As my graph contains about million edges, u
i just found that nx.edge_disjoint_paths
works to count the triangle contains certain edges. faster than nx.enumerate_all_cliques
and nx.cycle_basis
.
It returns the edges disjoint paths between source and target.Edge disjoint paths are paths that do not share any edge.
And result-1 is the number of triangles that contain certain edges or between source node and target node.
edge_triangle_dict = {}
for i in g.edges:
edge_triangle_dict[i] = len(list(nx.edge_disjoint_paths(g, i[0], i[1]))-1)
This is a more efficient version of Ajay M answer (I would have commented it, but I've not enough reputation).
Indeed the enumerate_all_cliques
method of networkx
will return all cliques in the graph, irrespectively of their length; hence looping over it may take a lot of time (especially with very dense graphs).
Moreover, once defined for triangles, it's just a matter of parametrization to generalize the method for every clique length so here's a function:
import networkx as nx
def get_cliques_by_length(G, length_clique):
""" Return the list of all cliques in an undirected graph G with length
equal to length_clique. """
cliques = []
for c in nx.enumerate_all_cliques(G) :
if len(c) <= length_clique:
if len(c) == length_clique:
cliques.append(c)
else:
return cliques
# return empty list if nothing is found
return cliques
To get triangles just use get_cliques_by_length(G, 3)
.
Caveat: this method works only for undirected graphs. Algorithm for cliques in directed graphs are not provided in networkx
I don't want to sound harsh, but have you tried to Google it? The first link is a pretty quick algorithm to do that: http://www.mail-archive.com/algogeeks@googlegroups.com/msg05642.html
And then there is this article on ACM (which you may have access to): http://portal.acm.org/citation.cfm?id=244866 (and if you don't have access, I am sure if you kindly ask the lady who wrote it, you will get a copy.)
Also, I can imagine a triangle enumeration method based on clique-decomposition, but I don't know if it was described somewhere.
Assuming its an undirected graph, the answer lies in networkx library of python. if you just need to count triangles, use:
import networkx as nx
tri=nx.triangles(g)
But if you need to know the edge list with triangle (triadic) relationship, use
all_cliques= nx.enumerate_all_cliques(g)
This will give you all cliques (k=1,2,3...max degree - 1)
So, to filter just triangles i.e k=3,
triad_cliques=[x for x in all_cliques if len(x)==3 ]
The triad_cliques will give a edge list with only triangles.
Surprised to see no mention of the Networkx triangles function. I know it doesn't necessarily return the groups of nodes that form a triangle, but should be pretty relevant to many who find themselves on this page.
nx.triangles(G) # list of how many triangles each node is part of
sum(nx.triangles(G).values())/3 # total number of triangles
An alternative way to return clumps of nodes would be something like...
for u,v,d in G.edges(data=True):
u_array = adj_m.getrow(u).nonzero()[1] # get lists of all adjacent nodes
v_array = adj_m.getrow(v).nonzero()[1]
# find the intersection of the two sets - these are the third node of the triangle
np.intersect1d(v_array,u_array)
If you don't care about multiple copies of the same triangle in different order then a list of 3-tuples works:
from itertools import combinations as combos
[(n,nbr,nbr2) for n in G for nbr, nbr2 in combos(G[n],2) if nbr in G[nbr2]]
The logic here is to check each pair of neighbors of every node to see if they are connected. G[n]
is a fast way to iterate over or look up neighbors.
If you want to get rid of reorderings, turn each triple into a frozenset and make a set of the frozensets:
set(frozenset([n,nbr,nbr2]) for n in G for nbr, nbr2 in combos(G[n]) if nbr in G[nbr2])
If you don't like frozenset and want a list of sets then:
triple_iter = ((n, nbr, nbr2) for n in G for nbr, nbr2 in combos(G[n],2) if nbr in G[nbr2])
triangles = set(frozenset(tri) for tri in triple_iter)
nice_triangles = [set(tri) for tri in triangles]