Can we train a neural network model in parallel using multicores by leveraging foreach package, nnet and caret packages ?
I only see randomforest implementation in p
doMC doesn't support R 3.2. you can use doParallel
library(doParallel);
cl <- makeCluster(detectCores())
registerDoParallel(cl)
tc <- trainControl(method="boot",number=25)
train(Species~.,data=iris,method="nnet",trControl=tc)
stopCluster(cl)
Are looking to implement the algorithm or your resampling in parallel? If you're looking for the later all you have to do simply register the number of cores you would like to use via registerDoMC()
and it will run those in parallel. Ex:
> library(caret)
> library(doMC)
>
> registerDoMC(4)
> tc <- trainControl(method="boot",number=25)
> train(Species~.,data=iris,method="nnet",trControl=tc)
# weights: 43
initial value 596.751921
iter 10 value 61.068365
iter 20 value 16.320051
iter 30 value 9.581306
iter 40 value 8.639828
iter 50 value 8.492001
iter 60 value 8.364661
iter 70 value 8.264618
iter 80 value 8.082598
iter 90 value 5.911050
iter 100 value 1.179339
final value 1.179339
stopped after 100 iterations
450 samples
4 predictors
3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Bootstrap (25 reps)
Summary of sample sizes: 450, 450, 450, 450, 450, 450, ...
Resampling results across tuning parameters:
size decay Accuracy Kappa Accuracy SD Kappa SD
1 0 0.755 0.64 0.251 0.366
1 1e-04 0.834 0.758 0.275 0.401
1 0.1 0.964 0.946 0.0142 0.0214
3 0 0.961 0.941 0.0902 0.135
3 1e-04 0.972 0.958 0.0714 0.104
3 0.1 0.977 0.966 0.0108 0.0163
5 0 0.973 0.96 0.0579 0.0888
5 1e-04 0.987 0.98 0.00856 0.0129
5 0.1 0.978 0.966 0.0112 0.0168
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were size = 5 and decay = 1e-04.
Screenshot of 4 cores running: