R_Extracting coordinates from SpatialPolygonsDataFrame

后端 未结 5 760
無奈伤痛
無奈伤痛 2020-12-31 11:52

Is it only me who have the problem with extracting coordinates of a polygon from SpatialPolygonsDataFrame object? I am able to extract other slots of the object

相关标签:
5条回答
  • 2020-12-31 12:18

    This question was also addressed on gis.stackexchange, here. I made an example below testing all the options mentioned here by @mdsumner. Also have a look here

    library(sp)
    library(sf)
    #> Warning: package 'sf' was built under R version 3.5.3
    #> Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
    library(raster)
    library(spbabel)
    #> Warning: package 'spbabel' was built under R version 3.5.3
    library(tmap)
    
    library(microbenchmark)
    library(ggplot2)
    
    # Prepare data
    data(World)
    # Convert from sf to sp objects
    atf_sf <- World[World$iso_a3 == "ATF", ]
    atf_sp <- as(atf_sf, "Spatial")
    atf_sp
    #> class       : SpatialPolygonsDataFrame 
    #> features    : 1 
    #> extent      : 5490427, 5660887, -6048972, -5932855  (xmin, xmax, ymin, ymax)
    #> coord. ref. : +proj=eck4 +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
    #> variables   : 15
    #> # A tibble: 1 x 15
    #>   iso_a3 name  sovereignt continent area  pop_est pop_est_dens economy
    #>   <fct>  <fct> <fct>      <fct>     <S3:>   <dbl>        <dbl> <fct>  
    #> 1 ATF    Fr. ~ France     Seven se~ 7257~     140       0.0193 6. Dev~
    #> # ... with 7 more variables: income_grp <fct>, gdp_cap_est <dbl>,
    #> #   life_exp <dbl>, well_being <dbl>, footprint <dbl>, inequality <dbl>,
    #> #   HPI <dbl>
    
    # Try various functions:
    
    raster::geom(atf_sp)
    #>       object part cump hole       x        y
    #>  [1,]      1    1    1    0 5550200 -5932855
    #>  [2,]      1    1    1    0 5589907 -5964836
    #>  [3,]      1    1    1    0 5660887 -5977490
    #>  [4,]      1    1    1    0 5656160 -5996685
    #>  [5,]      1    1    1    0 5615621 -6042456
    #>  [6,]      1    1    1    0 5490427 -6048972
    #>  [7,]      1    1    1    0 5509148 -5995424
    #>  [8,]      1    1    1    0 5536900 -5953683
    #>  [9,]      1    1    1    0 5550200 -5932855
    
    ggplot2::fortify(atf_sp)
    #> Regions defined for each Polygons
    #>      long      lat order  hole piece id group
    #> 1 5550200 -5932855     1 FALSE     1  8   8.1
    #> 2 5589907 -5964836     2 FALSE     1  8   8.1
    #> 3 5660887 -5977490     3 FALSE     1  8   8.1
    #> 4 5656160 -5996685     4 FALSE     1  8   8.1
    #> 5 5615621 -6042456     5 FALSE     1  8   8.1
    #> 6 5490427 -6048972     6 FALSE     1  8   8.1
    #> 7 5509148 -5995424     7 FALSE     1  8   8.1
    #> 8 5536900 -5953683     8 FALSE     1  8   8.1
    #> 9 5550200 -5932855     9 FALSE     1  8   8.1
    
    spbabel::sptable(atf_sp)
    #> # A tibble: 9 x 6
    #>   object_ branch_ island_ order_       x_        y_
    #>     <int>   <int> <lgl>    <int>    <dbl>     <dbl>
    #> 1       1       1 TRUE         1 5550200. -5932855.
    #> 2       1       1 TRUE         2 5589907. -5964836.
    #> 3       1       1 TRUE         3 5660887. -5977490.
    #> 4       1       1 TRUE         4 5656160. -5996685.
    #> 5       1       1 TRUE         5 5615621. -6042456.
    #> 6       1       1 TRUE         6 5490427. -6048972.
    #> 7       1       1 TRUE         7 5509148. -5995424.
    #> 8       1       1 TRUE         8 5536900. -5953683.
    #> 9       1       1 TRUE         9 5550200. -5932855.
    
    as.data.frame(as(as(atf_sp, "SpatialLinesDataFrame"),"SpatialPointsDataFrame"))
    #>     iso_a3                   name sovereignt               continent
    #> 8      ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.1    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.2    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.3    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.4    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.5    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.6    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.7    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #> 8.8    ATF Fr. S. Antarctic Lands     France Seven seas (open ocean)
    #>                area pop_est pop_est_dens              economy
    #> 8   7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.1 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.2 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.3 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.4 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.5 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.6 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.7 7257.455 [km^2]     140   0.01929051 6. Developing region
    #> 8.8 7257.455 [km^2]     140   0.01929051 6. Developing region
    #>                  income_grp gdp_cap_est life_exp well_being footprint
    #> 8   2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.1 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.2 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.3 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.4 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.5 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.6 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.7 2. High income: nonOECD    114285.7       NA         NA        NA
    #> 8.8 2. High income: nonOECD    114285.7       NA         NA        NA
    #>     inequality HPI Lines.NR Lines.ID Line.NR coords.x1 coords.x2
    #> 8           NA  NA        1        8       1   5550200  -5932855
    #> 8.1         NA  NA        1        8       1   5589907  -5964836
    #> 8.2         NA  NA        1        8       1   5660887  -5977490
    #> 8.3         NA  NA        1        8       1   5656160  -5996685
    #> 8.4         NA  NA        1        8       1   5615621  -6042456
    #> 8.5         NA  NA        1        8       1   5490427  -6048972
    #> 8.6         NA  NA        1        8       1   5509148  -5995424
    #> 8.7         NA  NA        1        8       1   5536900  -5953683
    #> 8.8         NA  NA        1        8       1   5550200  -5932855
    
    # What about speed? raster::geom is the fastest
    res <- microbenchmark(raster::geom(atf_sp),
                          ggplot2::fortify(atf_sp),
                          spbabel::sptable(atf_sp),
                          as.data.frame(as(as(atf_sp, "SpatialLinesDataFrame"),
                                           "SpatialPointsDataFrame")))
    ggplot2::autoplot(res)
    #> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
    

    Created on 2019-03-23 by the reprex package (v0.2.1)

    0 讨论(0)
  • 2020-12-31 12:20

    ggplot2's fortify() function may be deprecated at some point so the broom package is now suggested

    library(broom)
    broom::tidy(atf_sp)
    
    0 讨论(0)
  • 2020-12-31 12:30

    This took me a while to figure out too. The following function I wrote worked for me. sp.df should be SpatialPolygonsDataFrame.

    extractCoords <- function(sp.df)
    {
        results <- list()
        for(i in 1:length(sp.df@polygons[[1]]@Polygons))
        {
            results[[i]] <- sp.df@polygons[[1]]@Polygons[[i]]@coords
        }
        results <- Reduce(rbind, results)
        results
    }
    
    0 讨论(0)
  • Use the coordinates() function from the sp package. It should give you the values in a list format.

    You can also get the Polygon attribute from the shapefile.

    mfile = readOGR(dsn=dsn,layer=layername)
    polys = attr(mfile,'polygons')
    npolys = length(polys)
    for (i in 1:npolys){
      poly = polys[[i]]
      polys2 = attr(poly,'Polygons')
      npolys2 = length(polys2)
      for (j in 1:npolys2){
         #do stuff with these values
         coords = coordinates(polys2[[j]])
      }
    }
    
    0 讨论(0)
  • 2020-12-31 12:36

    Finally, I figured out that I didn't parse the output correctly. The correct way to do is bdryData@polygons[[2]]@Polygons[[1]]@coords. Mind the difference in command polygons(Polygons and polygons) and it took me ages to find out.

    0 讨论(0)
提交回复
热议问题