Max-Heapify A Binary Tree

后端 未结 4 490
半阙折子戏
半阙折子戏 2020-12-31 11:43

This is one of the interview questions I recently came across.

Given the root address of a complete or almost complete binary tree, we have to write a function to c

相关标签:
4条回答
  • 2020-12-31 11:48

    Here's a working code for this problem.

    package Test;
    
    
    import static Test.BinaryTreeNode.swap;
    
    public class TestImplementations {
        public static void main(String args[]){
            BinaryTreeNode root = new BinaryTreeNode(2,
                    new BinaryTreeNode(7,
                            new BinaryTreeNode(5,
                                    new BinaryTreeNode(1),new BinaryTreeNode(6)),
                            new BinaryTreeNode(9,
                                    new BinaryTreeNode(17))),
                    new BinaryTreeNode(3,
                            new BinaryTreeNode(11),new BinaryTreeNode(4))
                    );
            System.out.println(root);
            CustomHeap h = new CustomHeap();
            h.minHeapify(root);
            System.out.println(root);
        }
    }
    
    class BinaryTreeNode {
        private  Integer value;
        private  BinaryTreeNode left;
        private  BinaryTreeNode right;
    
        public BinaryTreeNode(Integer value){
            this.value = value;
            this.left = null;
            this.right = null;
        }
    
        public BinaryTreeNode(Integer value, BinaryTreeNode left){
            this.value = value;
            this.left = left;
            this.right = null;
        }
    
        public BinaryTreeNode(Integer value, BinaryTreeNode left, BinaryTreeNode right){
            this.value = value;
            this.left = left;
            this.right = right;
        }
    
        public Integer getValue() {
            return value;
        }
    
        public BinaryTreeNode getLeft() {
            return left;
        }
    
        public BinaryTreeNode getRight() {
            return right;
        }
    
        public static void swap(BinaryTreeNode r, BinaryTreeNode c){
            Integer val = r.getValue();
            r.value = c.getValue();
            c.value = val;
        }
    }
    
    class CustomHeap {
        public void minHeapify(Test.BinaryTreeNode r){
            if( r == null || (r.getLeft() == null && r.getRight() == null)){
                return;
            }
            minHeapify(r.getLeft());
            minHeapify(r.getRight());
            if(isMin(r,r.getLeft())){
                swap(r,r.getLeft());
                minHeapify(r.getLeft());
            }
            if(r.getRight() !=null && isMin(r,r.getRight())){
                swap(r,r.getRight());
                minHeapify(r.getRight());
            }
        }
    
        private Boolean isMin(Test.BinaryTreeNode r, Test.BinaryTreeNode c){
            return c.getValue() < r.getValue() ? Boolean.TRUE : Boolean.FALSE;
        }
    }
    
    0 讨论(0)
  • 2020-12-31 11:49

    I think you can get one work simply by revising postOrderTraverse. This is O(n)

    void Heapify_Min(TreeNode* node)
    {
      if(! = node) return;
       Heapify_Min(node->left);
       Heapify_Min(node->right);
       TreeNode* largest = node;
       if(node->left && node->left->val > node->val)
          largest = node->left;
       if(node->right && node->right->val > node->val)
          largest = node->right;
    
      if(largest != node)
      {
        swap(node, largest)
      }
    }
    
    void swap(TreeNode* n1, TreeNode* n2)
    {
        TreeNode* temp = n1->left;
        n1->left = n2->left;
        n2->left =temp;
    
        temp = n1->right;
        n1->right = n2->right;
        n2->right = temp;
    }
    
    }
    
    0 讨论(0)
  • 2020-12-31 11:51

    I don't know the way if you can't access the parent node easily or no array representation, if you could traverse the tree to record it ref in a array(O(N)), then it become simple.

            1   
         /    \
        2       5
      /   \    / \ 
     3     4  6   7
    
    from the last parent node to the root node(in your case 5,2,1:
      for each node make it compare to their children:
        if children is larger than parent, swap parent and children:
          if swapped: then check the new children's childrens utill no swap
    
            1   
         /    \
        2       7
      /   \    / \ 
     3     4  6   5    check [7]   5<-->7
    
            1   
         /    \
        4       7
      /   \    / \ 
     3     2  6   5    check [2]   4<-->2
    
            7   
         /    \
        4       1
      /   \    / \ 
     3     2  6   5    check [1]   7<-->1
    
            7   
         /    \
        4       6
      /   \    / \ 
     3     2  1   5    check [1]   6<-->1
    

    That is it! The complexity should be O(N*LogN).

    0 讨论(0)
  • 2020-12-31 12:04

    I think this can be done in O(NlogN) time by the following procedure. http://www.cs.rit.edu/~rpj/courses/bic2/studios/studio1/studio121.html

    Assume there is an element in the tree whose both left and right sub-trees are heaps.

              E
           H1   H2
    

    This Tree formed by E, H1 and H2 can be heapified in logN time by making the element E swim down to its correct position.

    Hence, we start building the heap bottom up. Goto the left-most sub-tree and convert it to a heap by trivial comparison. Do this for it's sibling as well. Then go up and convert it to heap.

    Like-wise do this for every element.

    EDIT: As mentioned in the comments, the complexity is actually O(N).

    0 讨论(0)
提交回复
热议问题