Pandas has a widely-used groupby facility to split up a DataFrame based on a corresponding mapping, from which you can apply a calculation on each subgroup and recombine the
There's probably a faster way than this (both of the operands are making copies right now), but:
np.bincount(np.broadcast_to(groups, X.T.shape).ravel(), X.T.ravel())
array([ 15., 30.])
If you want a more flexible implementation of groupby
that can group using any of numpy
's ufunc
s:
def groupby_np(X, groups, axis = 0, uf = np.add, out = None, minlength = 0, identity = None):
if minlength < groups.max() + 1:
minlength = groups.max() + 1
if identity is None:
identity = uf.identity
i = list(range(X.ndim))
del i[axis]
i = tuple(i)
n = out is None
if n:
if identity is None: # fallback to loops over 0-index for identity
assert np.all(np.in1d(np.arange(minlength), groups)), "No valid identity for unassinged groups"
s = [slice(None)] * X.ndim
for i_ in i:
s[i_] = 0
out = np.array([uf.reduce(X[tuple(s)][groups == i]) for i in range(minlength)])
else:
out = np.full((minlength,), identity, dtype = X.dtype)
uf.at(out, groups, uf.reduce(X, i))
if n:
return out
groupby_np(X, groups)
array([15, 30])
groupby_np(X, groups, uf = np.multiply)
array([ 0, 3024])
groupby_np(X, groups, uf = np.maximum)
array([5, 9])
groupby_np(X, groups, uf = np.minimum)
array([0, 6])
How about using scipy sparse matrix
import numpy as np
from scipy import sparse
import time
x_len = 500000
g_len = 100
X = np.arange(x_len * 2).reshape(x_len, 2)
groups = np.random.randint(0, g_len, x_len)
# original
s = time.time()
a = np.array([X[groups==i].sum() for i in np.unique(groups)])
print(time.time() - s)
# using scipy sparse matrix
s = time.time()
x_sum = X.sum(axis=1)
b = np.array(sparse.coo_matrix(
(
x_sum,
(groups, np.arange(len(x_sum)))
),
shape=(g_len, x_len)
).sum(axis=1)).ravel()
print(time.time() - s)
#compare
print(np.abs((a-b)).sum())
result on my PC
0.15915322303771973
0.012875080108642578
0
More than 10 times faster.
Update!
Let's benchmark answers of @Paul Panzer and @Daniel F. It is summation only benchmark.
import numpy as np
from scipy import sparse
import time
# by @Daniel F
def groupby_np(X, groups, axis = 0, uf = np.add, out = None, minlength = 0, identity = None):
if minlength < groups.max() + 1:
minlength = groups.max() + 1
if identity is None:
identity = uf.identity
i = list(range(X.ndim))
del i[axis]
i = tuple(i)
n = out is None
if n:
if identity is None: # fallback to loops over 0-index for identity
assert np.all(np.in1d(np.arange(minlength), groups)), "No valid identity for unassinged groups"
s = [slice(None)] * X.ndim
for i_ in i:
s[i_] = 0
out = np.array([uf.reduce(X[tuple(s)][groups == i]) for i in range(minlength)])
else:
out = np.full((minlength,), identity, dtype = X.dtype)
uf.at(out, groups, uf.reduce(X, i))
if n:
return out
x_len = 500000
g_len = 200
X = np.arange(x_len * 2).reshape(x_len, 2)
groups = np.random.randint(0, g_len, x_len)
print("original")
s = time.time()
a = np.array([X[groups==i].sum() for i in np.unique(groups)])
print(time.time() - s)
print("use scipy coo matrix")
s = time.time()
x_sum = X.sum(axis=1)
b = np.array(sparse.coo_matrix(
(
x_sum,
(groups, np.arange(len(x_sum)))
),
shape=(g_len, x_len)
).sum(axis=1)).ravel()
print(time.time() - s)
#compare
print(np.abs((a-b)).sum())
print("use scipy csr matrix @Daniel F")
s = time.time()
x_sum = X.sum(axis=1)
c = np.array(sparse.csr_matrix(
(
x_sum,
groups,
np.arange(len(groups)+1)
),
shape=(len(groups), g_len)
).sum(axis=0)).ravel()
print(time.time() - s)
#compare
print(np.abs((a-c)).sum())
print("use bincount @Paul Panzer @Daniel F")
s = time.time()
d = np.bincount(groups, X.sum(axis=1), g_len)
print(time.time() - s)
#compare
print(np.abs((a-d)).sum())
print("use ufunc @Daniel F")
s = time.time()
e = groupby_np(X, groups)
print(time.time() - s)
#compare
print(np.abs((a-e)).sum())
STDOUT
original
0.2882847785949707
use scipy coo matrix
0.012301445007324219
0
use scipy csr matrix @Daniel F
0.01046299934387207
0
use bincount @Paul Panzer @Daniel F
0.007468223571777344
0.0
use ufunc @Daniel F
0.04431319236755371
0
The winner is the bincount solution. But the csr matrix solution is also very interesting.
@klim's sparse matrix solution would at first sight appear to be tied to summation. We can, however, use it in the general case by converting between the csr
and csc
formats:
Let's look at a small example:
>>> m, n = 3, 8
>>> idx = np.random.randint(0, m, (n,))
>>> data = np.arange(n)
>>>
>>> M = sparse.csr_matrix((data, idx, np.arange(n+1)), (n, m))
>>>
>>> idx
array([0, 2, 2, 1, 1, 2, 2, 0])
>>>
>>> M = M.tocsc()
>>>
>>> M.indptr, M.indices
(array([0, 2, 4, 8], dtype=int32), array([0, 7, 3, 4, 1, 2, 5, 6], dtype=int32))
As we can see after conversion the internal representation of the sparse matrix yields the indices grouped and sorted:
>>> groups = np.split(M.indices, M.indptr[1:-1])
>>> groups
[array([0, 7], dtype=int32), array([3, 4], dtype=int32), array([1, 2, 5, 6], dtype=int32)]
>>>
We could have obtained the same using a stable argsort
:
>>> np.argsort(idx, kind='mergesort')
array([0, 7, 3, 4, 1, 2, 5, 6])
>>>
But sparse matrices are actually faster, even when we allow argsort
to use a faster non-stable algorithm:
>>> m, n = 1000, 100000
>>> idx = np.random.randint(0, m, (n,))
>>> data = np.arange(n)
>>>
>>> timeit('sparse.csr_matrix((data, idx, np.arange(n+1)), (n, m)).tocsc()', **kwds)
2.250748165184632
>>> timeit('np.argsort(idx)', **kwds)
5.783584725111723
If we require argsort
to keep groups sorted, the difference is even larger:
>>> timeit('np.argsort(idx, kind="mergesort")', **kwds)
10.507467685034499