I have the following (simplified) dataframe:
df = pd.DataFrame({\'X\': [1, 2, 3, 4, 5,6,7,8,9,10],
\'Y\': [10,20,30,40,50,-10,-20,-30,-40,-50],
\'Z\': [20,18
You can use apply
with nsmallest:
n = 3
df.apply(lambda x: pd.Series(x.nsmallest(n).index))
# X Y Z
#0 A J J
#1 B I I
#2 C H H
Faster numpy solution with numpy.argsort:
N = 3
a = np.argsort(-df.values, axis=0)[-1:-1-N:-1]
print (a)
[[0 9 9]
[1 8 8]
[2 7 7]]
b = pd.DataFrame(df.index[a], columns=df.columns)
print (b)
X Y Z
0 A J J
1 B I I
2 C H H
Timings:
In [111]: %timeit (pd.DataFrame(df.index[np.argsort(-df.values, axis=0)[-1:-1-N:-1]], columns=df.columns))
159 µs ± 1.37 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [112]: %timeit (df.apply(lambda x: pd.Series(x.nsmallest(N).index)))
3.52 ms ± 49.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
First, you want to sort your input dataframe per column, then get a list of all of the indices of each column, create a dataframe from these indices, then return the top n rows from the resultant dataframe.
def topN(df, n):
#first, sort dataframe per column
sort_x = df.sort_values(by = ['X'], ascending = True)
sort_y = df.sort_values(by = ['Y'], ascending = True)
sort_z = df.sort_values(by = ['Z'], ascending = True)
#now get a list of the indices of each sorted df
index_list_x = sort_x.index.values.tolist()
index_list_y = sort_y.index.values.tolist()
index_list_z = sort_z.index.values.tolist()
#create dataframe from lists
sorted_df = pd.DataFrame(
{'sorted_x':index_list_x,
'sorted_y':index_list_y,
'sorted_z':index_list_z
})
#return the top n from the sorted dataframe
return sorted_df.iloc[0:n]
topN(df,3)
Returns:
X Y Z
0 A J J
1 B I I
2 C H H