I\'m looking for a numpy function that will do the equivalent of:
indices = set([1, 4, 5, 6, 7])
zero = numpy.zeros(10)
for i in indices:
zero[i] = 42
If you have an ndarray:
>>> x = np.zeros((3, 3, 3))
>>> y = [0, 9, 18]
>>> x
array([[[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]],
[[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]],
[[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]]])
>>> np.put(x, y, 1)
>>> x
array([[[ 1., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]],
[[ 1., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]],
[[ 1., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]]])
You can just give it a list of indices:
indices = [1, 4, 5, 6, 7]
zero = numpy.zeros(10)
zero[indices] = 42