Python: Resize an existing array and fill with zeros

后端 未结 5 1357
遥遥无期
遥遥无期 2020-12-30 20:55

I think that my issue should be really simple, yet I can not find any help on the Internet whatsoever. I am very new to Python, so it is possible that I am missing somethin

相关标签:
5条回答
  • 2020-12-30 21:19

    sigma.resize() returns None because it operates in-place. np.resize(sigma, shape), on the other hand, returns the result but instead of padding with zeros, it pads with repeats of the array.

    Also, the shape() function returns the shape of the input. If you just want to predefine a shape, just use a tuple.

    import numpy as np
    ...
    shape = (6, 6) #This will be some pre-determined size
    sigma = np.diag(S) #diagonalise the matrix - this works
    sigma.resize(shape) #Resize the matrix and fill with zeros
    

    However, this will first flatten out your original array, and then reconstruct it into the given shape, destroying the original ordering. If you just want to "pad" with zeros, instead of using resize() you can just directly index into a generated zero-matrix.

    # This assumes that you have a 2-dimensional array
    zeros = np.zeros(shape, dtype=np.int32)
    zeros[:sigma.shape[0], :sigma.shape[1]] = sigma
    
    0 讨论(0)
  • 2020-12-30 21:20

    I see the edit... you do have to create the zeros first and then move some numbers into it. np.diag_indices_from might be useful for you

    bigger_sigma = np.zeros(shape, dtype=sigma.dtype)
    diag_ij = np.diag_indices_from(sigma)
    bigger_sigma[diag_ij] = sigma[diag_ij] 
    
    0 讨论(0)
  • 2020-12-30 21:23

    This solution works with resize function

    Take a sample array

    S= np.ones((3))
    print (S)
    # [ 1.  1.  1.]
    d= np.diag(S) 
    print(d)
    """
    [[ 1.  0.  0.]
     [ 0.  1.  0.]
     [ 0.  0.  1.]]
    
    """
    

    This dosent work, it just add a repeating values

    np.resize(d,(6,3))
    """
    adds a repeating value
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.],
           [ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    """
    

    This does work

    d.resize((6,3),refcheck=False)
    print(d)
    """
    [[ 1.  0.  0.]
     [ 0.  1.  0.]
     [ 0.  0.  1.]
     [ 0.  0.  0.]
     [ 0.  0.  0.]
     [ 0.  0.  0.]]
    """
    
    0 讨论(0)
  • 2020-12-30 21:36

    Another pure python solution is

    a = [1, 2, 3]
    b = []
    for i in range(6):
        b.append((([0] * i) + a[i:i+1] + ([0] * (len(a) - 1 - i)))[:len(a)])
    

    b is now

    [[1, 0, 0], [0, 2, 0], [0, 0, 3], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
    

    it's a hideous solution, I'll admit that. However, it illustrates some functions of the list type that can be used.

    0 讨论(0)
  • 2020-12-30 21:43

    There is a new numpy function in version 1.7.0 numpy.pad that can do this in one-line. Like the other answers, you can construct the diagonal matrix with np.diag before the padding. The tuple ((0,N),(0,0)) used in this answer indicates the "side" of the matrix which to pad.

    import numpy as np
    
    A = np.array([1, 2, 3])
    
    N = A.size
    B = np.pad(np.diag(A), ((0,N),(0,0)), mode='constant')
    

    B is now equal to:

    [[1 0 0]
     [0 2 0]
     [0 0 3]
     [0 0 0]
     [0 0 0]
     [0 0 0]]
    
    0 讨论(0)
提交回复
热议问题