I want to use lemmatization on a text file:
surprise heard thump opened door small seedy man clasping package wrapped.
upgrading system found review spring
There is a function from the book Adavanced analitics in Spark, chapter about Lemmatization:
val plainText = sc.parallelize(List("Sentence to be precessed."))
val stopWords = Set("stopWord")
import edu.stanford.nlp.pipeline._
import edu.stanford.nlp.ling.CoreAnnotations._
import scala.collection.JavaConversions._
def plainTextToLemmas(text: String, stopWords: Set[String]): Seq[String] = {
val props = new Properties()
props.put("annotators", "tokenize, ssplit, pos, lemma")
val pipeline = new StanfordCoreNLP(props)
val doc = new Annotation(text)
pipeline.annotate(doc)
val lemmas = new ArrayBuffer[String]()
val sentences = doc.get(classOf[SentencesAnnotation])
for (sentence <- sentences; token <- sentence.get(classOf[TokensAnnotation])) {
val lemma = token.get(classOf[LemmaAnnotation])
if (lemma.length > 2 && !stopWords.contains(lemma)) {
lemmas += lemma.toLowerCase
}
}
lemmas
}
val lemmatized = plainText.map(plainTextToLemmas(_, stopWords))
lemmatized.foreach(println)
Now just use this for every line in mapper.
val lemmatized = plainText.map(plainTextToLemmas(_, stopWords))
EDIT:
I added to the code line
import scala.collection.JavaConversions._
this is needed because otherwise sentences are Java not Scala List. This should now compile without problems.
I used scala 2.10.4 and fallowing stanford.nlp dependencies:
<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.5.2</version>
</dependency>
<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.5.2</version>
<classifier>models</classifier>
</dependency>
You can also look at stanford.nlp page there is a lot of examples (in Java) http://nlp.stanford.edu/software/corenlp.shtml.
EDIT:
MapPartition version:
Although i dont know if its gonna speed up job significantly.
def plainTextToLemmas(text: String, stopWords: Set[String], pipeline: StanfordCoreNLP): Seq[String] = {
val doc = new Annotation(text)
pipeline.annotate(doc)
val lemmas = new ArrayBuffer[String]()
val sentences = doc.get(classOf[SentencesAnnotation])
for (sentence <- sentences; token <- sentence.get(classOf[TokensAnnotation])) {
val lemma = token.get(classOf[LemmaAnnotation])
if (lemma.length > 2 && !stopWords.contains(lemma)) {
lemmas += lemma.toLowerCase
}
}
lemmas
}
val lemmatized = plainText.mapPartitions(p => {
val props = new Properties()
props.put("annotators", "tokenize, ssplit, pos, lemma")
val pipeline = new StanfordCoreNLP(props)
p.map(q => plainTextToLemmas(q, stopWords, pipeline))
})
lemmatized.foreach(println)
I think @user52045 has the right idea. The only modification I would make would be to use mapPartitions instead of map -- this allows you to only do the potentially expensive pipeline creation once per partition. This may not be a huge hit on a lemmatization pipeline, but it will be extremely important if you want to do something that requires a model, like the NER portion of the pipeline.
def plainTextToLemmas(text: String, stopWords: Set[String], pipeline:StanfordCoreNLP): Seq[String] = {
val doc = new Annotation(text)
pipeline.annotate(doc)
val lemmas = new ArrayBuffer[String]()
val sentences = doc.get(classOf[SentencesAnnotation])
for (sentence <- sentences; token <- sentence.get(classOf[TokensAnnotation])) {
val lemma = token.get(classOf[LemmaAnnotation])
if (lemma.length > 2 && !stopWords.contains(lemma)) {
lemmas += lemma.toLowerCase
}
}
lemmas
}
val lemmatized = plainText.mapPartitions(strings => {
val props = new Properties()
props.put("annotators", "tokenize, ssplit, pos, lemma")
val pipeline = new StanfordCoreNLP(props)
strings.map(string => plainTextToLemmas(string, stopWords, pipeline))
})
lemmatized.foreach(println)
I would suggest using the Stanford CoreNLP wrapper for Apache Spark as it gives the official API for the basic core nlp function such as Lemmatization, tokenization, etc.
I have used the same for lemmatization on a spark dataframe.
Link to use :https://github.com/databricks/spark-corenlp