Spark: Get top N by key

后端 未结 4 1724
星月不相逢
星月不相逢 2020-12-30 08:32

Say I have a PairRDD as such (Obviously much more data in real life, assume millions of records):

val scores = sc.parallelize(Array(
      (\"a\", 1),  
            


        
相关标签:
4条回答
  • 2020-12-30 08:58

    I think this should be quite efficient:

    Edited according to OP comments:

    scores.mapValues(p => (p, p)).reduceByKey((u, v) => {
      val values = List(u._1, u._2, v._1, v._2).sorted(Ordering[Int].reverse).distinct
      if (values.size > 1) (values(0), values(1))
      else (values(0), values(0))
    }).collect().foreach(println)
    
    0 讨论(0)
  • 2020-12-30 08:58
     scores.reduceByKey(_ + _).map(x => x._2 -> x._1).sortByKey(false).map(x => x._2 -> x._1).take(2).foreach(println)
    
    0 讨论(0)
  • 2020-12-30 09:02

    Since version 1.4, there is a built-in way to do this using MLLib: https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/rdd/MLPairRDDFunctions.scala

    import org.apache.spark.mllib.rdd.MLPairRDDFunctions.fromPairRDD
    scores.topByKey(2)
    
    0 讨论(0)
  • 2020-12-30 09:02

    Slightly modified your input data.

    val scores = sc.parallelize(Array(
          ("a", 1),  
          ("a", 2), 
          ("a", 3), 
          ("b", 3), 
          ("b", 1), 
          ("a", 4),  
          ("b", 4), 
          ("b", 2),
          ("a", 6),
          ("b", 8)
        ))
    

    I explain how to do it step by step:

    1.Group by key to create array

    scores.groupByKey().foreach(println)  
    

    Result:

    (b,CompactBuffer(3, 1, 4, 2, 8))
    (a,CompactBuffer(1, 2, 3, 4, 6))
    

    As you see, each value itself is a array of numbers. CompactBuffer is just optimised array.

    2.For each key, reverse sort list of numbers that value contains

    scores.groupByKey().map({ case (k, numbers) => k -> numbers.toList.sorted(Ordering[Int].reverse)} ).foreach(println)
    

    Result:

    (b,List(8, 4, 3, 2, 1))
    (a,List(6, 4, 3, 2, 1))
    

    3.Keep only first 2 elements from the 2nd step, they will be top 2 scores in the list

    scores.groupByKey().map({ case (k, numbers) => k -> numbers.toList.sorted(Ordering[Int].reverse).take(2)} ).foreach(println)
    

    Result:

    (a,List(6, 4))
    (b,List(8, 4))
    

    4.Flat map to create new Paired RDD for each key and top score

    scores.groupByKey().map({ case (k, numbers) => k -> numbers.toList.sorted(Ordering[Int].reverse).take(2)} ).flatMap({case (k, numbers) => numbers.map(k -> _)}).foreach(println)
    

    Result:

    (b,8)
    (b,4)
    (a,6)
    (a,4)
    

    5.Optional step - sort by key if you want

    scores.groupByKey().map({ case (k, numbers) => k -> numbers.toList.sorted(Ordering[Int].reverse).take(2)} ).flatMap({case (k, numbers) => numbers.map(k -> _)}).sortByKey(false).foreach(println)
    

    Result:

    (a,6)
    (a,4)
    (b,8)
    (b,4)
    

    Hope, this explanation helped to understand the logic.

    0 讨论(0)
提交回复
热议问题