Can I plot a colorbar for a bokeh heatmap?

前端 未结 6 1466
再見小時候
再見小時候 2020-12-30 06:26

Does bokeh have a simple way to plot the colorbar for a heatmap?

In this example it would be a strip illustrating how colors correspond to values.

相关标签:
6条回答
  • 2020-12-30 07:04

    UPDATE: This is now much easier: see

    http://docs.bokeh.org/en/latest/docs/user_guide/annotations.html#color-bars


    I'm afraid I don't have a great answer, this should be easier in Bokeh. But I have done something like this manually before.

    Because I often want these off my plot, I make a new plot, and then assemble it together with something like hplot or gridplot.

    There is an example of this here: https://github.com/birdsarah/pycon_2015_bokeh_talk/blob/master/washmap/washmap/water_map.py#L179

    In your case, the plot should be pretty straight forward. If you made a datasource like this:

    | value | color
    | 1     | blue
    .....
    | 9     | red
    

    Then you could do something like:

    legend = figure(tools=None)
    legend.toolbar_location=None
    legend.rect(x=0.5, y='value', fill_color='color', width=1, height=1, source=source)
    layout = hplot(main, legend)
    show(legend)
    

    However, this does rely on you knowing the colors that your values correspond to. You can pass a palette to your heatmap chart call - as shown here: http://docs.bokeh.org/en/latest/docs/gallery/cat_heatmap_chart.html so then you would be able to use that to construct the new data source from that.

    I'm pretty sure there's at least one open issue around color maps. I know I just added one for off-plot legends.

    0 讨论(0)
  • 2020-12-30 07:04

    Here is some code loosely based on birdsarah's response for generating a colorbar:

    def generate_colorbar(palette, low=0, high=15, plot_height = 100, plot_width = 500, orientation = 'h'):
    
        y = np.linspace(low,high,len(palette))
        dy = y[1]-y[0]
        if orientation.lower()=='v':
            fig = bp.figure(tools="", x_range = [0, 1], y_range = [low, high], plot_width = plot_width, plot_height=plot_height)
            fig.toolbar_location=None
            fig.xaxis.visible = None
            fig.rect(x=0.5, y=y, color=palette, width=1, height = dy)
        elif orientation.lower()=='h':
            fig = bp.figure(tools="", y_range = [0, 1], x_range = [low, high],plot_width = plot_width, plot_height=plot_height)
            fig.toolbar_location=None
            fig.yaxis.visible = None
            fig.rect(x=y, y=0.5, color=palette, width=dy, height = 1)
        return fig
    

    Also, if you are interested in emulating matplot lib colormaps, try using this:

    import matplotlib as mpl
    def return_bokeh_colormap(name):
        cm = mpl.cm.get_cmap(name)
        colormap = [rgb_to_hex(tuple((np.array(cm(x))*255).astype(np.int))) for x in range(0,cm.N)]
        return colormap
    def rgb_to_hex(rgb):
        return '#%02x%02x%02x' % rgb[0:3]
    
    0 讨论(0)
  • 2020-12-30 07:10

    Since other answers here seem very complicated, here an easily understandable piece of code that generates a colorbar on a bokeh heatmap.

    import numpy as np
    from bokeh.plotting import figure, show
    from bokeh.models import LinearColorMapper, BasicTicker, ColorBar
    
    
    data = np.random.rand(10,10)
    
    color_mapper = LinearColorMapper(palette="Viridis256", low=0, high=1)
    
    plot = figure(x_range=(0,1), y_range=(0,1))
    plot.image(image=[data], color_mapper=color_mapper,
               dh=[1.0], dw=[1.0], x=[0], y=[0])
    
    color_bar = ColorBar(color_mapper=color_mapper, ticker= BasicTicker(),
                         location=(0,0))
    
    plot.add_layout(color_bar, 'right')
    
    show(plot)
    

    0 讨论(0)
  • 2020-12-30 07:13

    This is high on my wish list as well. It would also need to automatically adjust the range if the plotted data changed (e.g. moving through one dimension of a 3D data set). The code below does something which people might find useful. The trick is to add an extra axis to the colourbar which you can control through a data source when the data changes.

    import numpy
    
    from bokeh.plotting import Figure
    
    from bokeh.models import ColumnDataSource, Plot, LinearAxis
    from bokeh.models.mappers import LinearColorMapper
    from bokeh.models.ranges import Range1d
    from bokeh.models.widgets import Slider
    from bokeh.models.widgets.layouts import VBox
    
    from bokeh.core.properties import Instance
    
    from bokeh.palettes import RdYlBu11
    
    from bokeh.io import curdoc
    
    class Colourbar(VBox):
    
        plot = Instance(Plot)
        cbar = Instance(Plot)
    
        power = Instance(Slider)
    
        datasrc = Instance(ColumnDataSource)
        cbarrange = Instance(ColumnDataSource)
    
        cmap = Instance(LinearColorMapper)
    
        def __init__(self):
    
            self.__view_model__ = "VBox"
            self.__subtype__ = "MyApp"
    
            super(Colourbar,self).__init__()
    
            numslices = 6
            x = numpy.linspace(1,2,11)
            y = numpy.linspace(2,4,21)
            Z = numpy.ndarray([numslices,y.size,x.size])
            for i in range(numslices):
                for j in range(y.size):
                    for k in range(x.size):
                        Z[i,j,k] = (y[j]*x[k])**(i+1) + y[j]*x[k]
    
            self.power = Slider(title = 'Power',name = 'Power',start = 1,end = numslices,step = 1,
                                value = round(numslices/2))
            self.power.on_change('value',self.inputchange)
    
            z = Z[self.power.value]
            self.datasrc = ColumnDataSource(data={'x':x,'y':y,'z':[z],'Z':Z})
    
            self.cmap = LinearColorMapper(palette = RdYlBu11)
    
            r = Range1d(start = z.min(),end = z.max())        
            self.cbarrange = ColumnDataSource(data = {'range':[r]})
    
            self.plot = Figure(title="Colourmap plot",x_axis_label = 'x',y_axis_label = 'y',
                               x_range = [x[0],x[-1]],y_range=[y[0],y[-1]],
                               plot_height = 500,plot_width = 500)
    
            dx = x[1] - x[0]
            dy = y[1] - y[0]
    
            self.plot.image('z',source = self.datasrc,x = x[0]-dx/2, y = y[0]-dy/2,
                            dw = [x[-1]-x[0]+dx],dh = [y[-1]-y[0]+dy],
                            color_mapper = self.cmap)
    
            self.generate_colorbar()
    
            self.children.append(self.power)
            self.children.append(self.plot)
            self.children.append(self.cbar)
    
        def generate_colorbar(self,cbarlength = 500,cbarwidth = 50):
    
            pal = RdYlBu11
    
            minVal = self.datasrc.data['z'][0].min()
            maxVal = self.datasrc.data['z'][0].max()
            vals = numpy.linspace(minVal,maxVal,len(pal))
    
            self.cbar = Figure(tools = "",x_range = [minVal,maxVal],y_range = [0,1],
                               plot_width = cbarlength,plot_height = cbarwidth)
    
            self.cbar.toolbar_location = None 
            self.cbar.min_border_left = 10
            self.cbar.min_border_right = 10
            self.cbar.min_border_top = 0
            self.cbar.min_border_bottom = 0
            self.cbar.xaxis.visible = None
            self.cbar.yaxis.visible = None
            self.cbar.extra_x_ranges = {'xrange':self.cbarrange.data['range'][0]}
            self.cbar.add_layout(LinearAxis(x_range_name = 'xrange'),'below')
    
            for r in self.cbar.renderers:
                if type(r).__name__ == 'Grid':
                    r.grid_line_color = None
    
            self.cbar.rect(x = vals,y = 0.5,color = pal,width = vals[1]-vals[0],height = 1)
    
        def updatez(self):
    
            data = self.datasrc.data
            newdata = data
            z = data['z']
            z[0] = data['Z'][self.power.value - 1]
            newdata['z'] = z
            self.datasrc.trigger('data',data,newdata)
    
        def updatecbar(self):
    
            minVal = self.datasrc.data['z'][0].min()
            maxVal = self.datasrc.data['z'][0].max()
            self.cbarrange.data['range'][0].start = minVal
            self.cbarrange.data['range'][0].end = maxVal
    
        def inputchange(self,attrname,old,new):
    
            self.updatez()
            self.updatecbar()
    
    curdoc().add_root(Colourbar())
    
    0 讨论(0)
  • 2020-12-30 07:15

    To do this I did the same as @birdsarah. As an extra tip though if you use the rect method as your colour map, then use the rect method once again in the colour bar and use the same source. The end result is that you can select sections of the colour bar and it also selects in your plot.

    Try it out:

    http://simonbiggs.github.io/electronfactors

    0 讨论(0)
  • 2020-12-30 07:17

    Since the 0.12.3 version Bokeh has the ColorBar.

    This documentation was very useful to me:

    http://docs.bokeh.org/en/dev/docs/user_guide/annotations.html#color-bars

    0 讨论(0)
提交回复
热议问题