In ruby, what is the most efficient way to calculate the bit difference between two unsigned integers (e.g. the hamming distance)?
Eg, I have integer a = 2323409845
If one intends to follow c-based path, it is a good idea to add the compiler flag -msse4.2
to your makefile. This allows the compiler to generate hardware based popcnt
instructions instead of using a table to generate the popcount. On my system this was approximately 2.5x faster.
You can make use of the optimized String functions in Ruby to do the bit counting, instead of pure arithmetic. It turns out to be about 6 times faster with some quick benchmarking.
def h2(a, b)
(a^b).to_s(2).count("1")
end
h1 is the normal way to calculate, while h2 converts the xor into a string, and counts the number of "1"s
Benchmark:
ruby-1.9.2-p180:001:0>> def h1(a, b)
ruby-1.9.2-p180:002:1*> ret = 0
ruby-1.9.2-p180:003:1*> xor = a ^ b
ruby-1.9.2-p180:004:1*> until xor == 0
ruby-1.9.2-p180:005:2*> ret += 1
ruby-1.9.2-p180:006:2*> xor &= xor - 1
ruby-1.9.2-p180:007:2*> end
ruby-1.9.2-p180:008:1*> ret
ruby-1.9.2-p180:009:1*> end
# => nil
ruby-1.9.2-p180:010:0>> def h2(a, b)
ruby-1.9.2-p180:011:1*> (a^b).to_s(2).count("1")
ruby-1.9.2-p180:012:1*> end
# => nil
ruby-1.9.2-p180:013:0>> h1(2323409845, 1782647144)
# => 17
ruby-1.9.2-p180:014:0>> h2(2323409845, 1782647144)
# => 17
ruby-1.9.2-p180:015:0>> quickbench(10**5) { h1(2323409845, 1782647144) }
Rehearsal ------------------------------------
2.060000 0.000000 2.060000 ( 1.944690)
--------------------------- total: 2.060000sec
user system total real
1.990000 0.000000 1.990000 ( 1.958056)
# => nil
ruby-1.9.2-p180:016:0>> quickbench(10**5) { h2(2323409845, 1782647144) }
Rehearsal ------------------------------------
0.340000 0.000000 0.340000 ( 0.333673)
--------------------------- total: 0.340000sec
user system total real
0.320000 0.000000 0.320000 ( 0.326854)
# => nil
ruby-1.9.2-p180:017:0>>
Per the suggestion of mu is too short, I wrote a simple C extension to use __builtin_popcount , and using benchmark verified that it is at least 3X faster than ruby's optimized string functions..
I looked at the following two tutorials:
In my program:
require './FastPopcount/fastpopcount.so'
include FastPopcount
def hamming(a,b)
popcount(a^b)
end
Then in the dir containing my program, I create a folder "PopCount" with the following files.
extconf.rb:
# Loads mkmf which is used to make makefiles for Ruby extensions
require 'mkmf'
# Give it a name
extension_name = 'fastpopcount'
# The destination
dir_config(extension_name)
# Do the work
create_makefile(extension_name)
popcount.c:
// Include the Ruby headers and goodies
#include "ruby.h"
// Defining a space for information and references about the module to be stored internally
VALUE FastPopcount = Qnil;
// Prototype for the initialization method - Ruby calls this, not you
void Init_fastpopcount();
// Prototype for our method 'popcount' - methods are prefixed by 'method_' here
VALUE method_popcount(int argc, VALUE *argv, VALUE self);
// The initialization method for this module
void Init_fastpopcount() {
FastPopcount = rb_define_module("FastPopcount");
rb_define_method(FastPopcount, "popcount", method_popcount, 1);
}
// Our 'popcount' method.. it uses the builtin popcount
VALUE method_popcount(int argc, VALUE *argv, VALUE self) {
return INT2NUM(__builtin_popcount(NUM2UINT(argv)));
}
Then in the popcount directory run:
ruby extconf.rb make
Then run the program, and there you have it....fastest way to do hamming distance in ruby.
An algorithm of Wegner:
def hamm_dist(a, b)
dist = 0
val = a ^ b
while not val.zero?
dist += 1
val &= val - 1
end
dist
end
p hamm_dist(2323409845, 1782647144) # => 17