Creating a function to replace NAs from one data.frame with values from another

后端 未结 3 530
鱼传尺愫
鱼传尺愫 2020-12-30 02:56

I regularly have situations where I need to replace missing values from a data.frame with values from some other data.frame that is at a different level of aggregation. So,

相关标签:
3条回答
  • 2020-12-30 03:57

    Here's a slightly more concise/robust version of your approach. You could replace the for-loop with a call to lapply, but I find the loop easier to read.

    This function assumes any columns not in mergeCols are fair game to have their NAs filled. I'm not really sure this helps, but I'll take my chances with the voters.

    fillNaDf.ju <- function(naDf, fillDf, mergeCols) {
      mergedDf <- merge(fillDf, naDf, by=mergeCols, suffixes=c(".fill",""))
      dataCols <- setdiff(names(naDf),mergeCols)
      # loop over all columns we didn't merge by
      for(col in dataCols) {
        rows <- is.na(mergedDf[,col])
        # skip this column if it doesn't contain any NAs
        if(!any(rows)) next
        rows <- which(rows)
        # replace NAs with values from fillDf
        mergedDf[rows,col] <- mergedDf[rows,paste(col,"fill",sep=".")]
      }
      # don't return ".fill" columns
      mergedDf[,names(naDf)]
    }
    
    0 讨论(0)
  • 2020-12-30 03:59

    My preference would be to pull out the code from merge that does the matching and do it myself so that I could keep the ordering of the original data frame intact, both row-wise and column-wise. I also use matrix indexing to avoid any loops, though to do so I create a new data frame with the revised fillCols and replace the columns of the original with it; I thought I could fill it in directly but apparently you can't use matrix ordering to replace parts of a data.frame, so I wouldn't be surprised if a loop over the names would be faster in some situations.

    With matrix indexing:

    fillNaDf <- function(naDf, fillDf, mergeCols, fillCols) {
      fillB <- do.call(paste, c(fillDf[, mergeCols, drop = FALSE], sep="\r"))
      naB <- do.call(paste, c(naDf[, mergeCols, drop = FALSE], sep="\r"))
      na.ind <- is.na(naDf[,fillCols])
      fill.ind <- cbind(match(naB, fillB)[row(na.ind)[na.ind]], col(na.ind)[na.ind])
      naX <- naDf[,fillCols]
      fillX <- fillDf[,fillCols]
      naX[na.ind] <- fillX[fill.ind]
      naDf[,colnames(naX)] <- naX
      naDf
    }
    

    With a loop:

    fillNaDf2 <- function(naDf, fillDf, mergeCols, fillCols) {
      fillB <- do.call(paste, c(fillDf[, mergeCols, drop = FALSE], sep="\r"))
      naB <- do.call(paste, c(naDf[, mergeCols, drop = FALSE], sep="\r"))
      m <- match(naB, fillB)
      for(col in fillCols) {
        fix <- which(is.na(naDf[,col]))
        naDf[fix, col] <- fillDf[m[fix],col]
      }
      naDf
    }
    
    0 讨论(0)
  • 2020-12-30 04:02

    What a great question.

    Here's a data.table solution:

    # Convert data.frames to data.tables (i.e. data.frames with extra powers;)
    library(data.table)
    fillDT <- data.table(fillDf, key=c("a", "b"))
    naDT <- data.table(naDf, key=c("a", "b"))
    
    
    # Merge data.tables, based on their keys (columns a & b)
    outDT <- naDT[fillDT]    
    #      a b  f  g f.1 g.1
    # [1,] 1 3 NA  0 100  11
    # [2,] 1 3 NA NA 100  11
    # [3,] 1 3 NA  0 100  11
    # [4,] 1 3  0  0 100  11
    # [5,] 1 3  0 NA 100  11
    # First 5 rows of 200 printed.
    
    # In outDT[i, j], on the following two lines 
    #   -- i is a Boolean vector indicating which rows will be operated on
    #   -- j is an expression saying "(sub)assign from right column (e.g. f.1) to 
    #        left column (e.g. f)
    outDT[is.na(f), f:=f.1]
    outDT[is.na(g), g:=g.1]
    
    # Just keep the four columns ultimately needed   
    outDT <- outDT[,list(a,b,g,f)]
    #       a b  g   f
    #  [1,] 1 3  0   0
    #  [2,] 1 3 11   0
    #  [3,] 1 3  0   0
    #  [4,] 1 3 11   0
    #  [5,] 1 3 11   0
    # First 5 rows of 200 printed.
    
    0 讨论(0)
提交回复
热议问题