I\'d like to write a function that normalizes the rows of a large sparse matrix (such that they sum to one).
from pylab import *
import scipy.sparse as sp
d
While Aarons answer is correct, I implemented a solution when I wanted to normalize with respect to the maximum of the absolute values, which sklearn is not offering. My method uses the nonzero entries and finds them in the csr_matrix.data array to replace values there quickly.
def normalize_sparse(csr_matrix):
nonzero_rows = csr_matrix.nonzero()[0]
for idx in np.unique(nonzero_rows):
data_idx = np.where(nonzero_rows==idx)[0]
abs_max = np.max(np.abs(csr_matrix.data[data_idx]))
if abs_max != 0:
csr_matrix.data[data_idx] = 1./abs_max * csr_matrix.data[data_idx]
In contrast to sunan's solution, this method does not require any casting of the matrix into dense format (which could raise memory problems) and no matrix multiplications either. I tested the method on a sparse matrix of shape (35'000, 486'000) and it took ~ 18 seconds.
This has been implemented in scikit-learn sklearn.preprocessing.normalize.
from sklearn.preprocessing import normalize
w_normalized = normalize(w, norm='l1', axis=1)
axis=1
should normalize by rows, axis=0
to normalize by column. Use the optional argument copy=False
to modify the matrix in place.
I found this as an elegant way of doing it without using inbuilt functions.
import scipy.sparse as sp
def normalize(W):
#Find the row scalars as a Matrix_(n,1)
rowSumW = sp.csr_matrix(W.sum(axis=1))
rowSumW.data = 1/rowSumW.data
#Find the diagonal matrix to scale the rows
rowSumW = rowSumW.transpose()
scaling_matrix = sp.diags(rowSumW.toarray()[0])
return scaling_matrix.dot(W)
here is my solution.
transpose C
import scipy.sparse as sp
import numpy as np
import math
minf = 0.0001
A = sp.lil_matrix((5,5))
b = np.arange(0,5)
A.setdiag(b[:-1], k=1)
A.setdiag(b)
print A.todense()
A = A.T
print A.todense()
sum_of_col = A.sum(0).tolist()
print sum_of_col
c = []
for i in sum_of_col:
for j in i:
if math.fabs(j)<minf:
c.append(0)
else:
c.append(1/j)
print c
B = sp.lil_matrix((5,5))
B.setdiag(c)
print B.todense()
C = A*B
print C.todense()
C = C.T
print C.todense()
Without importing sklearn, converting to dense or multiplying matrices and by exploiting the data representation of csr matrices:
from scipy.sparse import isspmatrix_csr
def normalize(W):
""" row normalize scipy sparse csr matrices inplace.
"""
if not isspmatrix_csr(W):
raise ValueError('W must be in CSR format.')
else:
for i in range(W.shape[0]):
row_sum = W.data[W.indptr[i]:W.indptr[i+1]].sum()
if row_sum != 0:
W.data[W.indptr[i]:W.indptr[i+1]] /= row_sum
Remember that W.indices
is the array of column indices,
W.data
is the array of corresponding nonzero values
and W.indptr
points to row starts in indices and data.
You can add a numpy.abs()
when taking the sum if you need the L1 norm or use numpy.max()
to normalize by the maximum value per row.