I have an array [1, 2, 3]
of integer and I need to return all the possible combination of contiguous sub-arrays of this array.
[[1],[2],[3],[1,2],
An itertools
based approach:
import itertools
def allSubArrays(xs):
n = len(xs)
indices = list(range(n+1))
for i,j in itertools.combinations(indices,2):
yield xs[i:j]
For example:
>>> list(allSubArrays([1,2,3]))
[[1], [1, 2], [1, 2, 3], [2], [2, 3], [3]]
def kwindow(L, k):
for i in range(len(L)-k+1):
yield L[i:i+k]
def getAllWindows(L):
for w in range(1, len(L)+1):
yield from kwindow(L, w)
Ouput:
In [39]: for i in getAllWindows([1,2,3]): print(i)
[1]
[2]
[3]
[1, 2]
[2, 3]
[1, 2, 3]
One line solution (I don't know what means "better way" for you)
L = [1,2,3]
[L[i:i+j] for i in range(0,len(L)) for j in range(1,len(L)-i+1)]
L=[1,2,3,4]
[L[i:i+j] for i in range(0,len(L)) for j in range(1,len(L)-i+1)]
you get,
[[1], [1, 2], [1, 2, 3], [2], [2, 3], [3]]
[[1],
[1, 2],
[1, 2, 3],
[1, 2, 3, 4],
[2],
[2, 3],
[2, 3, 4],
[3],
[3, 4],
[4]]
Simplifying the Inspector's solution:
def getAllWindows(L):
for w in range(1, len(L)+1):
for i in range(len(L)-w+1):
yield L[i:i+w]
And a solution using no loops at all:
def allSubArrays(L,L2=None):
if L2==None:
L2 = L[:-1]
if L==[]:
if L2==[]:
return []
return allSubArrays(L2,L2[:-1])
return [L]+allSubArrays(L[1:],L2)