How to split an NLP parse tree to clauses (independent and subordinate)?

后端 未结 2 1562
北海茫月
北海茫月 2020-12-29 14:35

Given an NLP parse tree like

(ROOT (S (NP (PRP You)) (VP (MD could) (VP (VB say) (SBAR (IN that) (S (NP (PRP they)) (ADVP (RB regularly)) (VP (VB catch) (NP         


        
相关标签:
2条回答
  • 2020-12-29 15:17

    You can use Tree.subtrees(). For more information check NLTK Tree Class.

    Code:

    from nltk import Tree
    
    parse_str = "(ROOT (S (NP (PRP You)) (VP (MD could) (VP (VB say) (SBAR (IN that) (S (NP (PRP they)) (ADVP (RB regularly)) (VP (VB catch) (NP (NP (DT a) (NN shower)) (, ,) (SBAR (WHNP (WDT which)) (S (VP (VBZ adds) (PP (TO to) (NP (NP (PRP$ their) (NN exhilaration)) (CC and) (NP (FW joie) (FW de) (FW vivre))))))))))))) (. .)))"
    #parse_str = "(ROOT (S (SBAR (IN Though) (S (NP (PRP he)) (VP (VBD was) (ADJP (RB very) (JJ rich))))) (, ,) (NP (PRP he)) (VP (VBD was) (ADVP (RB still)) (ADJP (RB very) (JJ unhappy))) (. .)))"
    
    t = Tree.fromstring(parse_str)
    #print t
    
    subtexts = []
    for subtree in t.subtrees():
        if subtree.label()=="S" or subtree.label()=="SBAR":
            #print subtree.leaves()
            subtexts.append(' '.join(subtree.leaves()))
    #print subtexts
    
    presubtexts = subtexts[:]       # ADDED IN EDIT for leftover check
    
    for i in reversed(range(len(subtexts)-1)):
        subtexts[i] = subtexts[i][0:subtexts[i].index(subtexts[i+1])]
    
    for text in subtexts:
        print text
    
    # ADDED IN EDIT - Not sure for generalized cases
    leftover = presubtexts[0][presubtexts[0].index(presubtexts[1])+len(presubtexts[1]):]
    print leftover
    

    Output:

    You could say 
    that 
    they regularly catch a shower , 
    which 
    adds to their exhilaration and joie de vivre
     .
    
    0 讨论(0)
  • 2020-12-29 15:28

    First get parse tree:

    # stanza.install_corenlp()
    
    from stanza.server import CoreNLPClient
    
    text = "Joe realized that the train was late while he waited at the train station"
    
    with CoreNLPClient(
            annotators=['tokenize', 'pos', 'lemma', 'parse', 'depparse'],
            output_format="json",
            timeout=30000,
            memory='16G') as client:
        output = client.annotate(text)
        # print(output.sentence[0])
        parse_tree = output['sentences'][0]['parse']
        parse_tree = ' '.join(parse_tree.split())
    

    Then use this gist to extract clauses by calling:

    print_clauses(parse_str=parse_tree)
    

    The output will be:

    {'the train was late', 'he waited at the train station', 'Joe realized'}
    
    0 讨论(0)
提交回复
热议问题