I have a BigInteger value, let\'s say it is 282 and is inside the variable x. I now want to write a while loop that states:
while b2 isn\'t a perfect square:
using System.Numerics; // needed for BigInteger
/* Variables */
BigInteger a, b, b2, n, p, q;
int flag;
/* Assign Data */
n = 10147;
a = iSqrt(n);
/* Algorithm */
do
{ a = a + 1;
b2 = (a * a) – n;
b = iSqrt(b2);
flag = BigInteger.Compare(b * b, b2);
} while(flag != 0);
/* Output Data */
p = a + b;
q = a – b;
/* Method */
private static BigInteger iSqrt(BigInteger num)
{ // Finds the integer square root of a positive number
if (0 == num) { return 0; } // Avoid zero divide
BigInteger n = (num / 2) + 1; // Initial estimate, never low
BigInteger n1 = (n + (num / n)) / 2;
while (n1 < n)
{ n = n1;
n1 = (n + (num / n)) / 2;
}
return n;
} // end iSqrt()
DON'T use this...
BigInteger n = ...;
double n_as_double = n.doubleValue();
double n_sqrt = Math.sqrt(n_as_double);
BigInteger n_sqrt_as_int = new BigDecimal(n_sqrt).toBigInteger();
if (n_sqrt_as_int.pow(2).equals(n)) {
// number is perfect square
}
As Christian Semrau commented below - this doesn't work. I am sorry for posting incorrect answer.
I found a sqrt method used here, and simplified the square test.
private static final BigInteger b100 = new BigInteger("100");
private static final boolean[] isSquareResidue;
static{
isSquareResidue = new boolean[100];
for(int i =0;i<100;i++){
isSquareResidue[(i*i)%100]=true;
}
}
public static boolean isSquare(final BigInteger r) {
final int y = (int) r.mod(b100).longValue();
boolean check = false;
if (isSquareResidue[y]) {
final BigInteger temp = sqrt(r);
if (r.compareTo(temp.pow(2)) == 0) {
check = true;
}
}
return check;
}
public static BigInteger sqrt(final BigInteger val) {
final BigInteger two = BigInteger.valueOf(2);
BigInteger a = BigInteger.ONE.shiftLeft(val.bitLength() / 2);
BigInteger b;
do {
b = val.divide(a);
a = (a.add(b)).divide(two);
} while (a.subtract(b).abs().compareTo(two) >= 0);
return a;
}
I use this:
SQRPerfect is the number I want to test: This also has a nice Square Root so you get to use this as well if you need it seperately. You can get a little speed up if you bring the Square Root inside the Perfect Square test, but I like having both functions.
if(PerfectSQR(SQRPerfect)){
Do Something
}
public static Boolean PerfectSQR(BigInteger A) {
Boolean p=false;
BigInteger B=SQRT(A);
BigInteger C=B.multiply(B);
if (C.equals(A)){p=true;}
return p;
}
public static BigInteger SQRT(BigInteger A) {
BigInteger a=BigInteger.ONE,b=A.shiftRight(5).add(BigInteger.valueOf(8));
while ((b.compareTo(a))>=0){
BigInteger mid = a.add(b).shiftRight(1);
if (mid.multiply(mid).compareTo(A)>0){b=mid.subtract(BigInteger.ONE);}
else{a=mid.add(BigInteger.ONE);}
}
return a.subtract(BigInteger.ONE);
}
Compute the integer square root, then check that its square is your number. Here is my method of computing the square root using Heron's method:
private static final BigInteger TWO = BigInteger.valueOf(2);
/**
* Computes the integer square root of a number.
*
* @param n The number.
*
* @return The integer square root, i.e. the largest number whose square
* doesn't exceed n.
*/
public static BigInteger sqrt(BigInteger n)
{
if (n.signum() >= 0)
{
final int bitLength = n.bitLength();
BigInteger root = BigInteger.ONE.shiftLeft(bitLength / 2);
while (!isSqrt(n, root))
{
root = root.add(n.divide(root)).divide(TWO);
}
return root;
}
else
{
throw new ArithmeticException("square root of negative number");
}
}
private static boolean isSqrt(BigInteger n, BigInteger root)
{
final BigInteger lowerBound = root.pow(2);
final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
return lowerBound.compareTo(n) <= 0
&& n.compareTo(upperBound) < 0;
}
private static boolean isSqrt(BigInteger n, BigInteger root)
{
final BigInteger lowerBound = root.pow(2);
final BigInteger upperBound = root.add(BigInteger.ONE).pow(2);
return lowerBound.compareTo(n) <= 0
&& n.compareTo(upperBound) < 0;
}
I tried the above using JavaScript BigInt:
function isPerfectSqrt(n, root) {
const lowerBound = root**2n;
const upperBound = (root+1n)**2n
return lowerBound <= n && n < upperBound;
}
And found it was only about 60% as fast (in Node V8) as the one-liner:
function isPerfectSqrt(n, root) {
return (n/root === root && n%root === 0n)
}