When I check the tensorboard for observing the training performance, there only shows the eval_0 (in blue) result.
While it should be a separate train (in
If you want to evaluate your model on validation data you should use:
python models/research/object_detection/model_main.py --pipeline_config_path=/path/to/pipeline_file --model_dir=/path/to/output_results --checkpoint_dir=/path/to/directory_holding_checkpoint --run_once=True
If you want to evaluate your model on training data, you should set 'eval_training_data' as True, that is:
python models/research/object_detection/model_main.py --pipeline_config_path=/path/to/pipeline_file --model_dir=/path/to/output_results --eval_training_data=True --checkpoint_dir=/path/to/directory_holding_checkpoint --run_once=True
I also add comments to clarify some of previous options:
--pipeline_config_path: path to "pipeline.config" file used to train detection model. This file should include paths to the TFRecords files (train and test files) that you want to evaluate, i.e. :
...
train_input_reader: {
tf_record_input_reader {
#path to the training TFRecord
input_path: "/path/to/train.record"
}
#path to the label map
label_map_path: "/path/to/label_map.pbtxt"
}
...
eval_input_reader: {
tf_record_input_reader {
#path to the testing TFRecord
input_path: "/path/to/test.record"
}
#path to the label map
label_map_path: "/path/to/label_map.pbtxt"
}
...
--model_dir: Output directory where resulting metrics will be written, particularly "events.*" files that can be read by tensorboard.
--checkpoint_dir: Directory holding a checkpoint. That is the model directory where checkpoint files ("model.ckpt.*") has been written, either during training process, or after export it by using "export_inference_graph.py".
--run_once: True to run just one round of evaluation.