From Codechef:
A string is considered balanced if and only if all the characters occur in it equal number of times.
You are given a strin
if __name__ == "__main__":
for j in range(int(input())):
S = str(input())
N = len(S)
A = [0]*27
for c in S:
A[ord(c) - 65] = A[ord(c) - 65] + 1
A = sorted(A,reverse=True)
minSwap = N + 1
for i in range(1,27):
if N%i == 0:
temp = N//i
tempSwap = 0
for f in range(i):
if temp > A[f]:
tempSwap = tempSwap + temp - A[f]
if tempSwap <= minSwap:
minSwap = tempSwap
if minSwap == N+1:
minSwap = 0
print(minSwap)
Following code implement the solution, in Java, with unit test.
The algorithm is almost identical as in @ruakh's answer, if not identical.
BalanceString.java
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/**
* Assume string only contains A-Z, the 26 uppercase letter,
* <p>given a string, you can replace a char with another char from the 26 letter,
* <p>figure out the minimum replacement required to make the string balance,
* <p>which means each char in the string occurs the same time,
*
* @author eric
* @date 2/2/19 8:54 PM
*/
public class BalanceString {
private final char minChar;
private final char maxChar;
private final int distinctChars; // total distinct char count,
public static final BalanceString EN_UPPER_INSTANCE = new BalanceString('A', 'Z');
public BalanceString(char minChar, char maxChar) {
this.minChar = minChar;
this.maxChar = maxChar;
this.distinctChars = maxChar - minChar + 1;
if (distinctChars <= 0)
throw new IllegalArgumentException("invalid range of chars: [" + minChar + ", " + maxChar + "]");
}
/**
* Check minimal moves needed to make string balanced.
*
* @param str
* @return count of moves
*/
public int balanceCount(String str) {
// System.out.printf("string to balance:\t%s\n", str);
int len = str.length(); // get length,
if (len <= 2) return 0; // corner cases,
Map<Character, Integer> coMap = figureOccurs(str); // figure occurrences,
Integer[] occurs = sortOccursReversely(coMap); // reversely order occurrences,
int m = coMap.size(); // distinct char count,
int maxN = (len < distinctChars ? len : distinctChars); // get max possible distinct char count, included,
int smallestMoves = Integer.MAX_VALUE; // smallest moves, among all possible n,
// check each possible n, and get its moves,
for (int n = 1; n <= maxN; n++) {
if (len % n == 0) {
int moves = figureMoves(len, coMap, occurs, m, n);
if (moves < smallestMoves) smallestMoves = moves;
}
}
return smallestMoves;
}
/**
* Figure occurs for each char.
*
* @param str
* @return
*/
protected Map<Character, Integer> figureOccurs(String str) {
Map<Character, Integer> coMap = new HashMap<>();
for (char c : str.toCharArray()) {
if (c < minChar || c > maxChar)
throw new IllegalArgumentException(c + " is not within range 'A-Z'");
if (!coMap.containsKey(c)) coMap.put(c, 1);
else coMap.put(c, coMap.get(c) + 1);
}
return coMap;
}
/**
* Get reverse sorted occurrences.
*
* @param coMap
* @return
*/
protected Integer[] sortOccursReversely(Map<Character, Integer> coMap) {
Integer[] occurs = new Integer[coMap.size()];
coMap.values().toArray(occurs);
Arrays.sort(occurs, Collections.reverseOrder());
return occurs;
}
/**
* Figure moves needed to balance.
*
* @param len length of string,
* @param coMap
* @param m original distinct elements count,
* @param n new distinct elements count,
* @return count of moves,
*/
protected int figureMoves(int len, Map<Character, Integer> coMap, Integer[] occurs, int m, int n) {
int avgOccur = len / n; // average occurrence,
int moves = 0;
if (n == m) { // distinct chars don't change,
for (Integer occur : occurs) {
if (occur <= avgOccur) break;
moves += (occur - avgOccur);
}
} else if (n < m) { // distinct chars decrease,
for (int i = 0; i < n; i++) moves += Math.abs(occurs[i] - avgOccur); // for elements kept,
for (int i = n; i < m; i++) moves += occurs[i]; // for elements to replace,
moves >>= 1;
} else { // distinct chars increase,
for (int i = 0; i < occurs.length; i++) moves += Math.abs(occurs[i] - avgOccur); // for existing elements,
moves += ((n - m) * avgOccur); // for new elements,
moves >>= 1;
}
return moves;
}
public char getMinChar() {
return minChar;
}
public char getMaxChar() {
return maxChar;
}
public int getDistinctChars() {
return distinctChars;
}
}
BalanceStringTest.java
(Unit test, via TestNG
)
import org.testng.Assert;
import org.testng.annotations.Test;
/**
* BalanceString test.
*
* @author eric
* @date 2/2/19 9:36 PM
*/
public class BalanceStringTest {
private BalanceString bs = BalanceString.EN_UPPER_INSTANCE;
@Test
public void test() {
// n < m case,
Assert.assertEquals(bs.balanceCount("AAAABBBC"), 1); // e.g 1A -> B,
Assert.assertEquals(bs.balanceCount("AAAAABBC"), 2); // e.g 1A -> B, 1C -> B,
Assert.assertEquals(bs.balanceCount("AAAAAABC"), 2); // e.g 1B -> A, 1C -> A,
Assert.assertEquals(bs.balanceCount("AAAAAAAB"), 1); // e.g 1B -> A,
// n > m case,
Assert.assertEquals(bs.balanceCount("AAAABBBBCCCCDDDDEEEEAAAA"), 4); // add 1 new char, e.g change 4 A to 4 F,
Assert.assertEquals(bs.balanceCount(genIncSeq(10)), 15); // A-J, 10 distinct chars, 55 in length; solved by add 1 new char, need 15 steps,
// n == m case,
Assert.assertEquals(bs.balanceCount(genIncSeq(3)), 1); // A-C, 3 distinct chars, 6 in length; symmetric, solved with same distinct chars, need 1 steps,
Assert.assertEquals(bs.balanceCount(genIncSeq(11)), 15); // A-K, 11 distinct chars, 66 in length; symmetric, solved with same distinct chars, need 15 steps,
// n < m, or n > m case,
Assert.assertEquals(bs.balanceCount("ABAC"), 1); // e.g 1A -> B, or 1A -> D,
}
// corner case,
@Test
public void testCorner() {
// m <= 2,
Assert.assertEquals(bs.balanceCount(""), 0);
Assert.assertEquals(bs.balanceCount("A"), 0);
Assert.assertEquals(bs.balanceCount("AB"), 0);
Assert.assertEquals(bs.balanceCount("AA"), 0);
/*------ m == n == distinctChars ------*/
String mndBalanced = genMndBalancedSeq(); // each possible char occurs exactly once, already balanced,
Assert.assertEquals(mndBalanced.length(), bs.getDistinctChars());
Assert.assertEquals(bs.balanceCount(mndBalanced), 0); // no need change,
char lastChar = mndBalanced.charAt(mndBalanced.length() - 1);
String mndOneDup = mndBalanced.replace(lastChar, (char) (lastChar - 1)); // (distinctChars -2) chars occur exactly once, one occurs twice, one is missing, thus it's one step away to balance,
Assert.assertEquals(mndOneDup.length(), bs.getDistinctChars());
Assert.assertEquals(bs.balanceCount(mndOneDup), 1); // just replace the duplicate char with missing char,
}
// invalid input,
@Test(expectedExceptions = IllegalArgumentException.class)
public void testInvalidInput() {
Assert.assertEquals(bs.balanceCount("ABAc"), 1);
}
// invalid char range, for constructor,
@Test(expectedExceptions = IllegalArgumentException.class)
public void testInvalidRange() {
new BalanceString('z', 'a');
}
/**
* Generate a string, with first char occur once, second twice, third three times, and so on.
* <p>e.g A, ABB, ABBCCC, ABBCCCDDDD,
*
* @param m distinct char count,
* @return
*/
private String genIncSeq(int m) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < m; i++) {
for (int j = 0; j <= i; j++) sb.append((char) (bs.getMinChar() + i));
}
return sb.toString();
}
/**
* Generate a string that contains each possible char exactly once.
* <p>For [A-Z], it could be: "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
*
* @return
*/
private String genMndBalancedSeq() {
StringBuilder sb = new StringBuilder();
char minChar = bs.getMinChar();
int distinctChars = bs.getDistinctChars();
for (int i = 0; i < distinctChars; i++) {
sb.append((char) (minChar + i));
}
return sb.toString();
}
}
All test cases would pass.
O(len)
+ O(m * lg(m))
+ O(m * factorCount)
O(len)
, there are several sequential loop.O(m*lg(m))
, which is at most O(distinctChars * lg(distinctChars))
, thus constant, and only sort once.O(m)
.minChar
, maxChar
].O(len)
O(len)
.O(m)
.O(m)
.Where:
len
is string length.m
is distinct char count in original stringdistinctChars
is distinct char count, e.g 26.maxN
max possible distinct char count, included,factorCount
divisible number count in range [1, n]
, by len
,minChar
min char, e.g AmaxChar
max char, e.g ZAnd:
len
>= m
m
<= distinctChars
#include <iostream>
#include <string>
#include <vector>
int countOps(std::vector<int> &map, int requiredFreq) {
int countOps = 0, greaterFreq = 0, lesserFreq = 0;
for (auto a : map) {
if (a > 0 && a < requiredFreq) {
lesserFreq = lesserFreq + abs(requiredFreq - a);
}
else if (a > 0 && a > requiredFreq) {
greaterFreq = greaterFreq + abs(requiredFreq - a);
}
}
countOps = greaterFreq > lesserFreq ? (lesserFreq + (greaterFreq - lesserFreq)) : lesserFreq;
return countOps;
}
int balanceString(std::string &s, long n){
std::vector<int> map(26, 0);
int distinctChar = 0;
int requiredFreq = -1;
int count = INT_MAX;
// Creating map with frequency and counting distinct chars
for (char x : s) {
if (map[x - 'a'] == 0) distinctChar++;
map[x - 'a']++;
}
std::sort(std::begin(map), std::end(map), std::greater<int>{});
// If size is multiple of distinctChar
if (n % distinctChar == 0) {
requiredFreq = int(n / distinctChar);
count = countOps(map, requiredFreq);
}
else {
for (int i = 1; i < distinctChar; i++) {
if (n % i == 0){
requiredFreq = int(n / i);
std::vector<int> temp(map.begin(), map.begin() + i);
int x = countOps(temp, requiredFreq);
count = std::min(count, x);
}
}
}
return count;
}
int main() {
std::string s = "aaaaccddefghiii";
long n = s.size();
if(n <= 1) return 0;
int count = balanceString(s, n);
std::cout << count << std::endl;
return 0;
}
I don't think you really need dynamic programming here.
One approach in O(length(S)) time:
ABCB
example, that would be A->1 B->2 C->1 D->0 E->0 ... Z->0
, which we can represent as the array [1, 2, 1, 0, 0, ..., 0]
.
ABCB
and ABBC
, in that each can be balanced by replacing its C
with an A
.[0, 0, ..., 0, 1, 1, 2]
.
ABCB
and ABDB
, in that each can be balanced by replacing one of its singleton letters with its other one.Towards solving this problem ,I think it is also useful to find out all over extra presence( sum of number of elements which present more than one times) of different elements in string
for ex: in
aabbc
,number of elements we have to remove to make presence of each element one is equal to 2 (this is called good string
)
`x=input()
char=26
total=0
lis=[0]*char
#print(lis)
for i in range(len(x)):
lis[ord(x[i])-ord('a')]+=1
#print(lis)
for i in range(26):
if(lis[i]>1):
total=total+(lis[i]-1)
print(total)
`