I need to find as precisely as possible the peak of the kernel density estimation (modal value of the continuous random variable). I can find the approximate value:
I think you need two steps to archive what you need:
1) Find the x-Axis value of the KDE peak
2) Get the desnity value of the peak
So (if you dont mind using a package) a solution using the hdrcde
package would look like this:
require(hdrcde)
x<-rlnorm(100)
d<-density(x)
# calcualte KDE with help of the hdrcde package
hdrResult<-hdr(den=d,prob=0)
# define the linear interpolation function for the density estimation
dd<-approxfun(d$x,d$y)
# get the density value of the KDE peak
vDens<-dd(hdrResult[['mode']])
Edit: You could also use the
hdrResult[['falpha']]
if it is precise enough for you!
If I understand your question, I think you are just wanting a finer discretisation of x
and y
. To do this, you can change the value of n
in the density
function (default is n=512
).
For example, compare
set.seed(1)
x = rlnorm(100)
d = density(x)
i = which.max(d$y)
d$y[i]; d$x[i]
0.4526; 0.722
with:
d = density(x, n=1e6)
i = which.max(d$y)
d$y[i]; d$x[i]
0.4525; 0.7228
Here are two functions for dealing with modes. The dmode function finds the mode with the highest peak (dominate mode) and n.modes identify the number of modes.
dmode <- function(x) {
den <- density(x, kernel=c("gaussian"))
( den$x[den$y==max(den$y)] )
}
n.modes <- function(x) {
den <- density(x, kernel=c("gaussian"))
den.s <- smooth.spline(den$x, den$y, all.knots=TRUE, spar=0.8)
s.0 <- predict(den.s, den.s$x, deriv=0)
s.1 <- predict(den.s, den.s$x, deriv=1)
s.derv <- data.frame(s0=s.0$y, s1=s.1$y)
nmodes <- length(rle(den.sign <- sign(s.derv$s1))$values)/2
if ((nmodes > 10) == TRUE) { nmodes <- 10 }
if (is.na(nmodes) == TRUE) { nmodes <- 0 }
( nmodes )
}
# Example
x <- runif(1000,0,100)
plot(density(x))
abline(v=dmode(x))