I have a Matrix class template as follows:
template
class Matrix
{
T data[nrows][ncols];
public:
Use a pseudo-CRTP to add modular support for something.
template<class T, std::size_t nrows, std::size_t ncols>
class Matrix;
template<class T, std::size_t size>
struct MatrixDiagonalSupport {
auto self() { return static_cast<Matrix<T, size, size>*>(this); }
auto self() const { return static_cast<Matrix<T, size, size> const*>(this); }
void setIdentity() {
for (std::size_t i = 0; i < size; ++i) {
for (std::size_t j = 0; j < i; ++j) {
(*self())(i,j) = {};
}
(*self())(i,i) = 1; // hope T supports this!
for (std::size_t j = i+1; j < size; ++j) {
(*self())(i,j) = {};
}
}
}
};
template<class T>
struct empty_t {};
template<bool b, class T>
using maybe= std::conditional_t<b, T, empty_t<T>>;
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix: public maybe<nrows==ncols,MatrixDiagonalSupport<T, nrows>>
{
// ...
Here we inherit from nothing if we aren't diagonal, and a class implementing set identity if we are diagonal.
Users of Matrix
get .setIdentity()
from its parent magically if it is right.
static_cast
inside self()
ends up being a zero-cost abstraction and giving the base class access to the child class.
This is pseudo-CRTP because we don't actually pass the derived class type to the parent, just enough information for the parent to reconstruct it.
This solution makes the method an actual method, and avoids any kind of SFINAE trickery.
Live example
In C++11 replace conditional_t<?>
with typename conditional<?>::type
:
template<bool b, class T>
using maybe=typename std::conditional<b, T, empty_t<T>>::type;
and everything should compile.
skypjack and max66 have both presented simple answers to the problem. This is just an alternate way of doing it, using simple inheritance, although it means the use of a child class for square matrices:
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
protected:
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
};
template<typename T, std::size_t N>
class SqMatrix : public Matrix <T, N, N>
{
public:
setIdentity()
{
//Do whatever
}
}
A basic, but simple solution not mentioned by any other answer: you can use std::conditional
and inheritance.
It follows a minimal, working example:
#include<type_traits>
#include<cstddef>
struct HasSetIdentity {
void setIdentity() { }
};
struct HasNotSetIdentity {};
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix: public std::conditional<(nrows==ncols), HasSetIdentity, HasNotSetIdentity>::type
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
};
int main() {
Matrix<int, 2,2> m1;
m1.setIdentity();
Matrix<int, 2,3> m2;
// Method not available
// m2.setIdentity();
}
You can still move data down the hierarchy if you need them to be shared by all the subobjects.
It mostly depends on the real problem.
Just add a partial specialization:
template<typename T, std::size_t N>
class Matrix<T, N, N>
{
T data[N][N];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
void setidentity(/*whatever params*/) { std::cout << "yay!"; }
};
Live Example
For general N * M
matrices, the general template will be instantiated, whereas only for N * N
matrics, this specialization is a better match.
Disadvantage: code repetition of all regular code. Could use a base class, but it's actually easier to do some SFINAE magic (below)
You can also use SFINAE by adding hidden template parameters N
and M
that default to nrows
and ncols
to setidentity
, and to enable_if
on the condition N == M
.
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{
return data[i][j];
}
template <std::size_t N = nrows, std::size_t M = ncols, std::enable_if_t<(N == M)>* = nullptr>
void setidentity(/*whatever params*/) {
static_assert(N == nrows && M == ncols, "invalid");
std::cout << "yay!";
}
};
Or, since the question was tagged C++11, use typename std::enable_if<(N == M)>::type
instead.
Live Example
You can do it with std::enable_if
in the following mode
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{ /* do something */ }
A full example
#include <type_traits>
template<typename T, std::size_t nrows, std::size_t ncols>
class Matrix
{
T data[nrows][ncols];
public:
T& operator ()(std::size_t i, std::size_t j)
{ return data[i][j]; }
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{ /* do something */ }
};
int main()
{
Matrix<int, 3, 3> mi3;
Matrix<int, 3, 2> mnoi;
mi3.setIdentity();
// mnoi.setIdentity(); error
return 0;
}
--- EDIT ---
As pointed in a comment by Niall (regarding the TemplateRex's answer, but my solution suffer from the same defect) this solution can be circonvented expliciting the number of rows and columns in this way
mi3.setIdentity<4, 4>();
(but this isn't a real problem (IMHO) because mi3
is a square matrix and setIdentity()
could work with real dimensions (nrows
and ncols
)) or even with
mnoi.setIdentity<4, 4>()
(and this is a big problem (IMHO) because mnoi
isn't a square matrix).
Obviously there is the solution proposed by Niall (add a static_assert
; something like
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if<r == c>::type setIdentity ()
{
static_assert(r == nrows && c == ncols, "no square matrix");
/* do something else */
}
or something similar) but I propose to add the same check in std::enable_if
.
I mean
template <std::size_t r = nrows, std::size_t c = ncols>
typename std::enable_if< (r == c)
&& (r == nrows)
&& (c == ncols)>::type setIdentity ()
{ /* do something */ }